The net ionic equation of the reaction is:
- Pb²⁺aq) + 2 I(aq) → PbI2(s)
<h3>What is a net ionic ionic equation?</h3>
A net ionic equation is an equation which shows only the ions that are involved in the formation of a product in the reaction as well as the product of the reaction alone. Spectator ions are omitted.
The net ionic equation of the reaction is given below:
Pb²⁺aq) + 2 I(aq) → PbI2(s)
In conclusion, a net ionic equation does not show spectator ions.
Learn more about net ionic equation at: brainly.com/question/19705645
#SPJ1
The density of metal = 4.5 g/ml, and the metal = Titanium
<h3>Further explanation </h3>
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:

ρ = density
m = mass
v = volume
mass of metal=27 g
volume = 6 ml
The density :

The metal with a density of 4.5 g/ml is Titanium
Answer:
1.60×10¹⁴ s⁻¹
Explanation:
When an electron jumps from one energy level to a lower energy level some energy is released in the form of a photon.
<span>C. C4H8
Given that the number of moles of CO2 and H2O produced from the combustion are equal, that means for every carbon atom, there are 2 hydrogen atoms because CO2 has only 1 carbon atom and H2O has 2 hydrogen atoms. So let's look at the available choices and see which one is correct.
A. C2H2
This is a 1 to 1 ratio of carbon to hydrogen. Wrong answer.
B. C2H6
This is a 1 to 3 ratio of carbon to hydrogen. Wrong answer.
C. C4H8
This is a 1 to 2 ratio of carbon to hydrogen. Correct answer.
D. C6H6
This is a 1 to 1 ratio of carbon to hydrogen. Wrong answer.</span>
Answer:
A. there is an isotope of lanthanum with an atomic mass of 138.9
Explanation:
By knowing the different atomic masses of both Lanthanum atoms, we can not tell anything about their occurence in nature. Therefore, all the last three options are incorrect. Because, the atomic mass does not tell anything about the availability or natural abundance of an element.
Now, the isotopes of an element are those elements, which have same number of electrons and protons as the original element, but different number of neutrons. Therefore, they have same atomic number but, different atomic weight or atomic masses.
Hence, by looking at an elements having same atomic number, but different atomic masses, we can identify them as isotopes.
Thus, the correct option is:
<u>A. there is an isotope of lanthanum with an atomic mass of 138.9.</u>