I believe your answer Is C. An ammonia molecule has a trigonometrical pyramidal shape. Figure C has a <span>has a trigonometrical pyramidal shape.</span>
I hope I help
Answer:
The new acceleration becomes twice the pervious acceleration.
Explanation:
Given that,
Mass of the rock, m = 3 kg
Force, F = 1 N
We know that the force acting on an object is given by :
F = ma
a is acceleration of the rock
Put m = 3 kg and F = 1N,
If the force is doubled, F' = 2 N
So,
F'=ma'
So, the new acceleration becomes twice the initial acceleration.
Step (1):
Generation of electrophile: by the action of Lewis acid FeCl₃ on Cl₂ to serve as a source of Cl⁺ (Electrophile)
Step (2):
Addition of electrophile to form carbocation:
addition of electrophile to form C-Cl bond and form carbocation which is stabilized by resonance.
Step (3):
Loss of proton to re-form the aromatic ring by the action of FeCl₄⁻ which removes proton from carbon containing Cl and forming the aromatic ring again
1. carbon lies in the 2nd period where silicon in the third period.
2. carbon is a non metal whereas silicon is a metalloid.
3. there are only 3 isotopes of carbon and 23 isotopes of silicon
4. size of silicon atom is larger
5. silicon is heavier than carbon.
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546