Answer:
yes it is and sometimes it's not
Answer:
0.15g
Explanation:
Given parameters:
Number of molecules of water = 1.2 x 10²¹ molecules
Unknown:
Mass of SnO₂ = ?
Solution:
To solve this problem, we have to work from the known to the unknown specie;
SnO₂ + 2H₂ → Sn + 2H₂O
Ensure that the equation given is balanced;
Now,
the known species is water;
6.02 x 10²³ molecules of water = 1 mole
1.2 x 10²¹ molecules of water =
= 0.2 x 10⁻²moles
Number of moles of water = 0.002moles
From the balanced chemical equation:
2 mole of water is produced from 1 mole of SnO₂
0.002 moles of water will be produced from
= 0.001moles
To find the mass;
Mass = number of moles x molar mass
Molar mass of SnO₂ = 118.7 + 2(16) = 150.7g/mol
Mass = 0.001 x 150.7 = 0.15g
Yes, it depends on the size of the ball and the weight. If it's heavy and big then it'll affect how far it rolls, if it's small and has no weight then it won't really move as much
Answer:
the reaction will shift towards the “heat”—shifts to the left
Explanation:
To summarize:
o If temperature increases (adding heat), the reaction will shift away from the “heat” term and go in the
endothermic direction.
o If temperature decreases (removing heat), the reaction will shift towards the “heat” term and go in the
exothermic direction.
o NOTE: The endothermic direction is always away from the “heat” term and the exothermic direction is
towards the “heat” term.
Therefore the reaction will shift towards the “heat”—shifts to the left
Answer:
0.21mol Ar (g)
Explanation:
To convert from litres to moles at STP we must divide the amount of litres by 22.4.
4.7 / 22.4 = 0.21mol Ar (g)