1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OleMash [197]
3 years ago
10

A block whose weight is 45.8 N rests on a horizontal table. A horizontal force of 36.6 N is applied to the block. The coefficien

ts of static and kinetic friction are 0.697 and 0.371, respectively. Will the block move under the influence of the force, and, if so, what will be the block's acceleration? If the block does not move, give 0 m/s2 as the acceleration?
Physics
1 answer:
Liula [17]3 years ago
7 0

Answer:

Yes it will move and a= 4.19m/s^2

Explanation:

In order for the box to move it needs to overcome the maximum static friction force

Max Static Friction = μFn(normal force)

plug in givens

Max Static friction = 31.9226

Since 36.6>31.9226, the box will move

Mass= Wieght/g which is 45.8/9.8= 4.67kg

Fnet = Fapp-Fk

= 36.6-16.9918

=19.6082

=ma

Solve for a=4.19m/s^2

You might be interested in
A 1.50 3 103 - kg car starts from rest and accelerates uniformly to 18.0 m/s in 12.0 s. Assume that air resistance remains const
nexus9112 [7]

Answer:

Explanation:

let force exerted by engine be F.Net force =( F-400)N, applying newton law

     F-400 = 1.5 x 10³x18 =27000 ,

F = 27400 N.

velocity after 12 s  = 0 + 18 x 12 = 216 m/s

Average velocity = (0 + 216 )/2 = 108 m/s

Average power = force x average velocity = 27400 x 108 = 29.6 10⁵ W .⁶

b) At 12 s , velocity = 216 m/s

Instantaneous power = velocity x force = 216 x 27400 = 59.2 x 10⁶ W.

8 0
3 years ago
Read 2 more answers
A ball rolls off a desk at a speed of 3 m/s and lands .40 seconds later. How far from the base of the desk does the ball land?
Salsk061 [2.6K]

Is the velocity constant? Is there any friction?

3 meters per second

then after 40 seconds it must 3*40 = 120 meters

120 meters or 0.12 km if you will

7 0
3 years ago
Which observation would be evidence that heat was transferred by radiation?
oksian1 [2.3K]
I think the answer is D
8 0
3 years ago
What are the 3 Newton's law of motions?
irinina [24]

Answer:

laws of motion relate an object’s motion to the forces acting on it. In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.

4 0
2 years ago
A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the
lukranit [14]

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

5 0
3 years ago
Other questions:
  • ANSWER ASAP!!!!
    13·1 answer
  • A car accelerates from rest at -3.00m/s^2. What is the velocity at the end of 5.0s? What is the displacement after5.0s?
    9·1 answer
  • how do you relate the equations for kinetic and potential energy to illustrate the law of conservation of energy?
    9·1 answer
  • What r three positive results of a variation within a population that occur due to natural selection
    7·1 answer
  • A 0.45 kg soccer ball changes its velocity by 20.0 m/s due to a force applied to it in 0.10 seconds. What force was necessary fo
    9·2 answers
  • What is a Serous circuit
    14·2 answers
  • If two stars in the sky are separated by twice the angle projected by your index and pinky fingers, then how many degrees are th
    8·1 answer
  • 1. How many seconds in 1 year?
    8·2 answers
  • A football player runs down the field at a speed of 8 m/s how long will it take him to run 20 m?
    15·1 answer
  • Define potentiol energy , kenetic energy.​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!