1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
3 years ago
11

A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 25.0 kg of water at 20.0°C. What is the final te

mperature of the water–horseshoe system? Ignore the heat capacity of the container and assume a negligible amount of water boils away.
Physics
2 answers:
Ber [7]3 years ago
7 0

Answer:

Te =  23.4 °C

Explanation:

Given:-

- The mass of iron horseshoe, m = 1.50 kg

- The initial temperature of horseshoe, Ti_h = 550°C

- The specific heat capacity of iron, ci = 448 J/kgC

- The mass of water, M = 25 kg

- The initial temperature of water, Ti_w = 20°C

- The specific heat capacity of water, cw = 4186 J/kgC

Find:-

What is the final temperature of the water–horseshoe system?

Solution:-

- The interaction of horseshoe and water at their respective initial temperatures will obey the Zeroth and First Law of thermodynamics. The horseshoe at higher temperature comes in thermal equilibrium with the water at lower temperature. We denote the equilibrium temperature as (Te) and apply the First Law of thermodynamics on the system:

                             m*ci*( Ti_h - Te) = M*cw*( Te - Ti_w )

- Solve for (Te):

                             m*ci*( Ti_h ) + M*cw*( Ti_w ) = Te* (m*ci + M*cw )

                             Te = [ m*ci*( Ti_h ) + M*cw*( Ti_w ) ] / [ m*ci + M*cw ]

- Plug in the values and evaluate (Te):

                             Te = [1.5*448*550 + 25*4186*20 ] / [ 1.5*448 + 25*4186 ]

                             Te = 2462600 / 105322

                             Te =  23.4 °C    

koban [17]3 years ago
4 0

Answer:

Final temperature = 23.4 °C

Explanation:

The idea here is that the heat lost by the metal will be equal to the heat gained by the water.

In order to be able to calculate the final temperature of the iron + water system, we need to know the specific heats of water and iron which are;

C_water = 4.18 J/g°C

C_iron = 0.45 J/g°C

The formula to determine the determine the amount of heat lost or gained is given by;

q = m•c•ΔT

q = heat lost or gained

m = the mass of the sample

c = specific heat of the substance

ΔT = the change in temperature, defined as final temperature minus initial temperature

Now, -q_water = q_iron

The negative sign is used here because heat lost carries a negative sign. Let's say that the final temperature of the iron + water system will be T_f

Thus, we can say that the changes in temperature for the iron and for the water will be;

ΔT_iron = T_f − 550 °C

and ΔT_water = T_f − 20 °C

This means that we will now have;

−m_iron•c_iron•ΔT_iron = m_water•c_water•ΔT_water

This now gives us ;

−m_iron•c_iron•(T_f − 550°C) = m_water•c_water•(T_f − 20°C) - - - - (eq1)

Notice that the specific heats for these two substances is given per gram. This means that you will have to

Mass of iron = 1.5 kg = 1500g

Mass of water = 25 kg = 25000 g

Plugging the relevant values into eq(1),we have;

−(1500g)•(0.45 J/g°C)•(T_f − 550°C) = (25000 g)•(4.18 J/g°C)•(T_f − 20°C)

Multiplying out to get;

-675(T_f − 550) = 104,500(T_f − 20)

-675T_f + 371,250 = 104,500T_f - 2090000

371,250 + 2090000 = 104,500T_f + 675T_f

2461250 = 105175T_f

T_f = 2461250/105175 = 23.4 °C

You might be interested in
Describe an original example of <br> energy changing from one form to <br> two other forms
irinina [24]
1).  an electric motor running
Electrical energy is changing into kinetic energy and a little bit of heat

2).  light a match
The chemical energy stored in the match head changes into light and heat energy.

3).  a light bulb
Electrical energy is changed into light and heat energy.
8 0
3 years ago
What is an independent variable ?
seropon [69]
An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>
6 0
2 years ago
Read 2 more answers
When is a zero not significant?
maria [59]

Answer:

Not between significant digits.

Explanation:

A zero not significant when it's not between significant digits.

8 0
3 years ago
Read 2 more answers
I feel death among us
liberstina [14]

same but who knows how 2021 might go

3 0
3 years ago
Read 2 more answers
Which of these is a characteristic of the Milky Way galaxy
IRINA_888 [86]

Answer:

A

Explanation:

3 0
2 years ago
Other questions:
  • 14POINTS!!!!!!!!! AND BRAINLIEST ANSWER!!!!!!!!!!
    15·2 answers
  • If you cook a marshmallow a few feet above a camp fire, it will cook mostly
    12·1 answer
  • An automobile tire is filled with air at a pressure of 27.0 lb/in2 at 25°C. A cold front moves through and the temperature drops
    14·1 answer
  • A person on a roof throws one ball downward and an identical ball upward at the same speed. The ball thrown downward hits the gr
    7·1 answer
  • A standing wave is produced by plucking a string. the points along the plucked string that appear not to be vibrating are produc
    13·2 answers
  • What has a positive charge a comb or rubber band?
    6·2 answers
  • Consider the electric force between a pair of charged particles a certain distance apart. By Coulomb's Law: If, the distance bet
    11·1 answer
  • Calculate their speed between points A and B. Include the units.
    15·1 answer
  • Name the component used in electric circuits that is sensitive to temperature
    10·1 answer
  • Helpp I'll give brainliest smth
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!