Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.
Explanation:
The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:
F = BqVSinØ
If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field
According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.
The forces of attraction between water molecules and the glass walls and within the molecules of water themselves are what enable the water to rise in a thin tube immersed in water.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Surface or interfacial forces lead to capillarity. The forces of attraction between the water molecules and the glass walls and among the water molecules themselves are what causes the water in a thin tube submerged in water to rise.
Hence, the water rises up a thin capillary tube can be explained by Newton's third law.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
Answer:
oh i would have to do alot to answer that
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart, 
Initial speed of the cart, 
Mass of the larger cart, 
Initial speed of the larger cart, 
After the collision,
Final speed of the smaller cart,
(as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let
is the speed of the large cart after collision. It can be calculated using conservation of momentum as :





So, the speed of the large cart after collision is 0.301 m/s.
A decagram is 1000 times bigger than a centigram