Element atomic number position
Ba 56 group 2, period 6
Ca 12 group 2, period 3
S 16 group 16, period 3
Si `14 group 14, period 3
Now, you need to know the properties of the different type of elements and the tendencies on the periodic table.
The metallic elements are, those placed on the left side of the periodic table, are the ones that release an electron more easily, so they will requiere less energy to give it up when forming chemical bonds.
The higher the metallic character the less the energy need to give up an electron.
The metallic character grows as the group number decreases (goes to the left) period increases (goes downward), so among the elements considered, Barium will require the least amount of energy to give un an electron when forming chemical bonds.
<span>To solve this we assume that the gas inside the balloon is an ideal </span>gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant volume pressure and number of moles of the gas
the ratio of T and P is equal to some constant. At another set of condition, the constant is still the same. Calculations are as follows:
T1/P1 = T2/P2
P2 = T2 x P1 / T1
P2 = 25 x 29.4 / 75
P2 = 9.8 kPa
The question can be changed into a new form:
Which element has the most negative electron affinity, or attraction for electrons? halogens have the highest electron affinities, and thus are more attracted to the electrons in the Hydrogen atom than any element in their respective periods.
In this case all the following choices are in the same period, thus Cl or Chlorine is the answer as it is a halogen.
Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Answer:
0.5
Explanation:
1 mole of ammonium nitrate contains 2 moles of nirogen
1 mole of nitrogen converts to 0.5 moles of ammonium nitrate
the conversation factor is 0.5