Answer:
H₂ gas
Explanation:
The reaction between nitrogen gas and hydrogen gas forms ammonia (the Haber-Bosch process):
N₂ + 3H₂ ⇒ 2NH₃
The excess reactant can be found by comparing the moles of nitrogen and hydrogen. The molar mass of N₂ is 28.00 g/mol and the molar mass of H₂ is 2.02 g/mol.
(100 kg N₂)(1000g/kg)(mol/28.00g) = 3570 mol
(100 kg H₂)(1000g/kg)(mol/2.02g) = 49500 mol
The molar ratio between the reactant N₂ and H₂ is 1N₂:3H₂. The moles of nitrogen required to react with H₂ is:
(49500 mol H₂)(1N₂ / 3H₂) = 16500 mol
The amount of nitrogen required is more than what is available, so nitrogen is the limiting reagent and hydrogen is the excess reagent.
The correct answer is the fourth option. Plants perform photosynthesis during the day.<span> </span><span>Photosynthesis
is the process in plants to make their food. This involves the use carbon
dioxide to react with water and make sugar or glucose as the main product and
oxygen as a by-product.</span>
Answer:
In the third step of the citric acid cycle, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released.
Explanation:
In the first step of citric acid cycle, acetylCoA combines with a four-carbon molecule, oxaloacetate, forming a six-carbon molecule, citrate.
In the second step, the citrate in the presence of enzyme anicotase is converted into isocitrate.
<u>In the third step, the oxidation of isocitrate takes place and one molecule of carbon dioxide is released leaving behind one five-carbon molecule called as α-ketoglutarate. During this step, NAD⁺ is reduced to form NADH. </u>
<u>This is first round of the citric acid cycle that could possibly release a carbon atom originating from this acetyl CoA.</u>
On series of reaction, another carbon dioxide molecule also being relased and oxaloacetate is regenerated again.
Answer:
True.
Explanation:
Here is an example: Hubble Space Telescope's launch in 1990 sped humanity to one of its greatest advances in that journey. Hubble is a telescope that orbits Earth. Its position above the atmosphere, which distorts and blocks the light that reaches our planet, gives it a view of the universe that typically far surpasses that of ground-based telescopes.
Hubble is one of NASA's most successful and long-lasting science missions. It has beamed hundreds of thousands of images back to Earth, shedding light on many of the great mysteries of astronomy. Its gaze has helped determine the age of the universe, the identity of quasars, and the existence of dark energy.