Answer:
The correct answer is A :))
It will take 1.11 min to heat the sample to its melting point.
Melting point = - 20°C
Boiling point = 85°C
∆H of fusion = 180 J/g
∆H of vap = 500 J/g
C(solid) = 1.0 J/g °C
C(liquid) = 2.5 J/g °C
C(gas) = 0.5 J/g °C
Mass of sample = 25 g
Initial temperature = - 40°C
Final temperature = 100°C
Rate of heating = 450 J/min
Specific heat capacity formula:- q = m ×C×∆T
Here, q = heat energy
m = mass
C = specific heat
∆T = temperature change
Melting point = - 20°C
C(solid) = 1.0 J/g °C
∆T = final temperature - initial temperature = -20 - (-40) = 20
Put these value in Specific heat capacity formula
q = m ×C×∆T
q = 25×1.0×20
=500J
The Rate of heating = 450 J/min
i.e. 450J = 1min
so, 500J = 1.11min
1.11 minutes does it take to heat the sample to its melting point.
The specific heat capacity is defined as the amount of heat absorbed in line with unit mass of the material whilst its temperature increases 1 °C.
Learn more about specific heat capacity here:- brainly.com/question/26866234
#SPJ4
Answer:
The sum of the molar masses of each isotope of the element.
X:5.8g=16:(23+1+12+3*16)
x:5.=16:84
x:=5.8* 16/84
this is approximately 1.1
8 moles of water on the right side.
An oxidation-reduction or redox reaction is a reaction that involves the transfer of electrons between chemical items (the atoms, ions, or molecules involved in the reaction).
Redox reactions: the burning of fuels, the corrosion of metals, and even the processes of photosynthesis and cellular respiration involve oxidation and reduction.
Step 1:
MnO4- ----> Mn2+
2Cl- ------> Cl2
Step 2:
MnO4- --> Mn2+ + 4H2O
2Cl- -----> Cl2
Step 3:
8H+ + MnO4- ------> Mn2+ + 4H2O
2Cl- ----->Cl2
Step 4:
8H+ + MnO4- +5e- ------>Mn2+ + 4H2O
2Cl- ----> Cl2+ 2e-
Step 5:
16 H+ +2 MnO4- +10Cl- ----->2 Mn2+ + 8H2O+5Cl2
This is the balanced equation in an acidic medium.
That is 8, right side.
To know more about redox reaction follow the link:
https://brainly.in/question/9854479
#SPJ4