And object has mass, so if moving, has a momentum value.
Answer:
Aloe, Tulsi, Neem, Turmeric, and Ginger are medicinal plants that can help with a variety of diseases. Ginger, green tea, walnuts, aloe, pepper, and turmeric are just a few of these plants. Some plants and their derivatives are key sources of active compounds used in aspirin and toothpaste, among other things.
Explanation:
Plant name: Uses:
1. Marshmallow: //// Relief from aching muscles and pain in muscle, Heals insect bite. ////
2.California poppy //// Relieves tension, Removes nervous system
3. Tulsi //// Cures sore throat, Cures fever and asthma
4. Neem //// Cures skin diseases, Cures diabetics
5. Aloevera //// Heals burns, Relieves constipation
(Hope this helps can I pls have brainlist (crown)☺️)
Considering the definition of kinetic energy, the bullet has a kinetic energy of 156.25 J.
<h3>Kinetic energy</h3>
Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.
Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and in a rest position, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its rest state by applying a force to it.
The kinetic energy is represented by the following expression:
Ec= ½ mv²
Where:
- Ec is the kinetic energy, which is measured in Joules (J).
- m is the mass measured in kilograms (kg).
- v is the speed measured in meters over seconds (m/s).
<h3>Kinetic energy of a bullet</h3>
In this case, you know:
Replacing in the definition of kinetic energy:
Ec= ½ ×0.500 kg× (25 m/s)²
Solving:
<u><em>Ec= 156.25 J</em></u>
Finally, the bullet has a kinetic energy of 156.25 J.
Learn more about kinetic energy:
brainly.com/question/25959744
brainly.com/question/14028892
#SPJ1
Answer:
The value is 
Explanation:
From the question we are told that
The distance of separation is 
The current on the one wire is 
The current on the second wire is 
Generally the magnitude of the field exerted between the current carrying wire is

Here
is the magnetic field due to the first wire which is mathematically represented as

Here
is the distance to the half way point of the separation and the value is

is the magnetic field due to the first wire which is mathematically represented as

Here
is the distance to the half way point of the separation and the value is
This means that 
So

=> 
=> 
=> 
Answer:

Explanation:
For a linear elastic material Young's modulus is a constant that is given by:

Here, F is the force exerted on an object under tensio, A is the area of the cross-section perpendicular to the applied force,
is the amount by which the length of the object changes and
is the original length of the object. In this case the force is the weight of the mass:

Replacing the given values in Young's modulus formula:
