1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
2 years ago
7

Two astronauts, each with a mass of 50 kg, are connected by a 7 m massless rope. Initially they are rotating around their center

of mass with an angular velocity of 0.5 rad/s. One of the astronauts then pulls on the rope shortening the distance between the two astronauts to 4 m. What was the averageangular speed exerted by the astronaut on the rope?
Physics
1 answer:
kiruha [24]2 years ago
3 0

Answer:

The angular  velocity is w_f =  1.531 \ rad/ s

Explanation:

From the question we are told that

     The mass of each astronauts is  m =  50 \ kg

      The initial  distance between the two  astronauts  d_i  =  7 \  m

Generally the radius is mathematically represented as r_i  =  \frac{d_i}{2} = \frac{7}{2}  =  3.5 \  m

      The initial  angular velocity is  w_1 = 0.5 \  rad /s

       The  distance between the two astronauts after the rope is pulled is d_f =  4 \  m

Generally the radius is mathematically represented as r_f  =  \frac{d_f}{2} = \frac{4}{2}  =  2\  m

Generally from the law of angular momentum conservation we have that

           I_{k_1} w_{k_1}+ I_{p_1} w_{p_1} = I_{k_2} w_{k_2}+ I_{p_2} w_{p_2}

Here I_{k_1 } is the initial moment of inertia of the first astronauts which is equal to I_{p_1} the initial moment of inertia of the second astronauts  So

      I_{k_1} = I_{p_1 } =  m *  r_i^2

Also   w_{k_1 } is the initial angular velocity of the first astronauts which is equal to w_{p_1} the initial angular velocity of the second astronauts  So

      w_{k_1} =w_{p_1 } = w_1

Here I_{k_2 } is the final moment of inertia of the first astronauts which is equal to I_{p_2} the final moment of inertia of the second astronauts  So

      I_{k_2} = I_{p_2} =  m *  r_f^2

Also   w_{k_2 } is the final angular velocity of the first astronauts which is equal to w_{p_2} the  final angular velocity of the second astronauts  So

      w_{k_2} =w_{p_2 } = w_2

So

      mr_i^2 w_1 + mr_i^2 w_1 = mr_f^2 w_2 + mr_f^2 w_2

=>   2 mr_i^2 w_1 = 2 mr_f^2 w_2

=>   w_f =  \frac{2 * m * r_i^2 w_1}{2 * m *  r_f^2 }

=>    w_f =  \frac{3.5^2 *  0.5}{  2^2 }

=>   w_f =  1.531 \ rad/ s

       

You might be interested in
Because plate movements have raised ancient sea floors above sea level,
Elena-2011 [213]
Because plate movements have raised ancient sea floors above sea level, _________?

<span>Answer : Limestone that began as coral reefs can be found on the continents.</span>

3 0
3 years ago
Read 2 more answers
Consider a solid metal sphere (S) a few centimeters in diameter and a feather (F). For each quantity in the list that follows, i
Roman55 [17]

Answer:

A) Gravitational Force is greater in S.

B) Time taken to fall a given distance in air will be greater for F.

C) Both will take same time to fall in a vacuum.

D) Total force is greater in S.

Explanation:

(a) In this case, the gravitational force of S will be greater, because Newton's Second Law states that - F = ma, or weight =mg. g is constant. And mass of the solid metal is heavier.

(b) In this case, the time it will take for F to fall from a given distance in air will be greater than that of S, since the air resistance is not negligible (as in the case of S).

(c) In this, It will take same time for S and F because in a vacuum, there are no air particles, so there is no air resistance and gravity is the only force acting and so objects fall at the same rate in a vacuum.

(d) The total force will be greater in S than F because Force=ma and S is of heavier mass than F.

5 0
3 years ago
Satellite A has an orbital radius 3.00 times greater than that of satellite B. Satellite B's orbital period around Earth is 120
igomit [66]

Answer:

To find the circumference (orbit) of an object, you use Pi x Diameter. 

As you have the circumference of B, you divide it by Pi to get the Diameter. 

So 120 divided by 3.141592654 = 38.2 minutes for the Diameter. 

As' radius and Diameter will be 3x greater than B. 

38.2 x 3 = 114.6 

To get back to the orbital period, times 114.6 by Pi, and you will get 360 minutes

HOPE THIS HELPS AND PLS MARK AS BRAINLIEST

THNXX :)

7 0
3 years ago
A 10 kg monkey climbs up a massless rope that runs over a frictionless tree limb and back down to a 15 kg package on the ground.
pshichka [43]

Answer:

A. 4,9 m/s2

B. 2,0 m/s2

C. 120 N

Explanation:

In the image, 1 is going to represent the monkey and 2 is going to be the package.  Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

\sum F_y=m_1*a_m_i_n = T-m_1*g

If the package is barely lifted, that means that T=m_2*g; then:

\sum F_y =m_1*a_m_i_n=m_2*g-m_1*g

Solving the equation for a_mín, we have:

a_m_i_n=((m_2-m_1)/m_1)*g = ((15kg-10kg)/10kg)*9,8 m/s^2 =4,9 m/s^2

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:

For the monkey: \sum F_y = m_1*a \rightarrow T-m_1*g=m_1*a

For the package: \sum F_y = m_2*a \rightarrow m_2*g - T = m_2*a

The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:

For the package: \sum F_y = -m_2*a \rightarrow T-m2*g=-m_2*a \rightarrow m_2*g -T=m_2 *a

We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

m_1*a+m_1*g=m_2*g-m_2*a

Solving a, we have

(m_1+m_2)*a =(m_2 - m1)*g\\\\a=((m_2-m_1)/(m_1+m_2))*g \rightarrow a=((15kg-10kg)/(10kg+15kg))*9,8 m/s^2\\\\a= 2,0 m/s^2

We can then replace this value of a in one for the sums of force and find the tension T:

T = m_1*a+m_1*g \rightarrow T=m_1*(a+g)\\\\T = 10kg*(2,0 m/s^2+9,8 m/s^2) \\\\T = 120 N

5 0
3 years ago
A skateboarder is standing at the top of a tall ramp waiting to begin a trip. The skateboarder has
Mnenie [13.5K]
Has a skateboard. your gonna have to give more details the. that just one .
7 0
3 years ago
Other questions:
  • A solid, cylindrical wire conductor has radius R = 30 cm. The wire carries a current of 2.0 A which is uniformly distributed ove
    11·1 answer
  • 4. Two scientists are experimenting with pure samples of isotope X, a highly radioactive substance. The first scientist has a sa
    13·1 answer
  • Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to thenext handhold. A 9.3kggibbon has
    7·1 answer
  • If aluminum loses all 3 electrons how do you write the ion
    12·1 answer
  • A battery-operated car moves forward as a result of which device?
    9·2 answers
  • Unpolarized light is passed through an optical filter that is oriented in the vertical direction.
    14·1 answer
  • A disk of radius 25 cm spinning at a rate of 30 rpm slows to a stop over 3 seconds. what is the angular acceleration?
    14·1 answer
  • What is your zodiac sign?
    7·1 answer
  • Hi
    7·1 answer
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!