1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
3 years ago
7

Two astronauts, each with a mass of 50 kg, are connected by a 7 m massless rope. Initially they are rotating around their center

of mass with an angular velocity of 0.5 rad/s. One of the astronauts then pulls on the rope shortening the distance between the two astronauts to 4 m. What was the averageangular speed exerted by the astronaut on the rope?
Physics
1 answer:
kiruha [24]3 years ago
3 0

Answer:

The angular  velocity is w_f =  1.531 \ rad/ s

Explanation:

From the question we are told that

     The mass of each astronauts is  m =  50 \ kg

      The initial  distance between the two  astronauts  d_i  =  7 \  m

Generally the radius is mathematically represented as r_i  =  \frac{d_i}{2} = \frac{7}{2}  =  3.5 \  m

      The initial  angular velocity is  w_1 = 0.5 \  rad /s

       The  distance between the two astronauts after the rope is pulled is d_f =  4 \  m

Generally the radius is mathematically represented as r_f  =  \frac{d_f}{2} = \frac{4}{2}  =  2\  m

Generally from the law of angular momentum conservation we have that

           I_{k_1} w_{k_1}+ I_{p_1} w_{p_1} = I_{k_2} w_{k_2}+ I_{p_2} w_{p_2}

Here I_{k_1 } is the initial moment of inertia of the first astronauts which is equal to I_{p_1} the initial moment of inertia of the second astronauts  So

      I_{k_1} = I_{p_1 } =  m *  r_i^2

Also   w_{k_1 } is the initial angular velocity of the first astronauts which is equal to w_{p_1} the initial angular velocity of the second astronauts  So

      w_{k_1} =w_{p_1 } = w_1

Here I_{k_2 } is the final moment of inertia of the first astronauts which is equal to I_{p_2} the final moment of inertia of the second astronauts  So

      I_{k_2} = I_{p_2} =  m *  r_f^2

Also   w_{k_2 } is the final angular velocity of the first astronauts which is equal to w_{p_2} the  final angular velocity of the second astronauts  So

      w_{k_2} =w_{p_2 } = w_2

So

      mr_i^2 w_1 + mr_i^2 w_1 = mr_f^2 w_2 + mr_f^2 w_2

=>   2 mr_i^2 w_1 = 2 mr_f^2 w_2

=>   w_f =  \frac{2 * m * r_i^2 w_1}{2 * m *  r_f^2 }

=>    w_f =  \frac{3.5^2 *  0.5}{  2^2 }

=>   w_f =  1.531 \ rad/ s

       

You might be interested in
What is the acceleration of a Ford Mustang GT that can go from 0.00 to 27.8<br> m/s in 5.15 seconds?
bixtya [17]
Finding acceleration= final speed-initial speed/time taken (or A=V-U\T)

Finial speed= 27.8s
Initial speed= 0s
Time taken= 5.15

So..

27.8-0/5.15= 5.40m/s (rounded to two decimal places)
4 0
2 years ago
About three billion years ago, single-celled organisms called cyanobacteria lived in Earth’s oceans. They thrived on the ocean’s
pickupchik [31]
I think its Oxygen. 
ancient cyanobacteria produced Earth's first oxygen-rich atmosphere, which allowed the eventual rise of eukaryotes. T<span>he chloroplasts of eukaryotic algae and plants are derived from cyanobacteria</span>
3 0
3 years ago
Read 2 more answers
When does carbon dioxide absorb the most heat energy? uring freezing during deposition during sublimation during condensation?
ololo11 [35]
The answer for the given question above would be the third option. Carbon dioxide absorbs the most heat energy during SUBLIMATION. By definition, sublimation is <span>the transition of a substance from the solid to the gas phase without passing through the intermediate liquid phase. Hope this answers your question.</span>
3 0
3 years ago
Read 2 more answers
A world-class sprinter can burst out of the blocks to essentially top speed (of about 11.5 m/s) in the first 15.0 m of the race.
wolverine [178]
Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.

Let
a =  average acceleration,
t = time taken to attain final speed.

Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²

Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s

Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).
8 0
3 years ago
When we experience positive "g forces", it is as if we have become...
zhenek [66]

Answer:

heavier

Explanation:

7 0
2 years ago
Other questions:
  • What is the acceleration of a 50kg object that has been given a 20N push?
    9·1 answer
  • What information does the atomic mass of an element provide?
    9·1 answer
  • The rate constant for this second‑order reaction is 0.760 M−1⋅s−1 at 300 ∘C. A⟶products How long, in seconds, would it take for
    7·1 answer
  • A 2 µC charge q1 and a 2 µC charge q2 are 0.3 m from the x-axis. A 4 µC charge q3 is 0.4 m from the y-axis. The distances d13 an
    5·2 answers
  • The author writes that each part of the ecosystem is as important as another. Based
    12·1 answer
  • A football goalkeeper moves across her goal in a straight line. Her motion is shown on the following graph of horizontal positio
    5·1 answer
  • Is the substance above an element, compound or mixture?
    6·2 answers
  • Which is the atomic number of the carbon diagram below!
    11·1 answer
  • A cyclist rides at 30 kilometres per hour. How far will he travel in 2 hours?
    15·1 answer
  • A cue ball of inertia m is given a speed v before it collides elastically with a full rack of 15 stationary balls in a game of p
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!