Answer:
8
Step-by-step explanation:
I knew that 6 bigger than 50 is 56 and if the number is multiplied by 7 then you just do 56 divided by 7 and you get 8. So the number is 8 hope this helps :))
Answer:
x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
Step-by-step explanation:
Firstly let us split this up, we need to first work out what g(h(x)) is:
h(x) = Sqrt(x) so g(h(x)) = g(sqrt(x)) = sqrt(x) - 2
Now to work out f(g(h(x))) = f(sqrt(x) - 2) = (sqrt(x) - 2)^4 + 6
= (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) - 6
= (x - 2 * sqrt(x) + 4) * (x - 2 * sqrt(x) + 4) - 6
= x^2 - 2x * sqrt(x) + 4x - 2x * sqrt(x) + 4x - 8 * sqrt(x) + 4x - 8 * sqrt(x) + 16 - 6
= x^2 - 4x * sqrt(x) + 12x - 16 * sqrt(x) + 10
= x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
Answer:
Step-by-step explanation:
Lateral surface area of the triangular prism = Perimeter of the triangular base × Height
By applying Pythagoras theorem in ΔABC,
AC² = AB² + BC²
(34)² = (16)² + BC²
BC = 
= 
= 30 in.
Perimeter of the triangular base = AB + BC + AC
= 16 + 30 + 34
= 80 in
Lateral surface area = 80 × 22
= 1760 in²
Total Surface area = Lateral surface area + 2(Surface area of the triangular base)
Surface area of the triangular base = 
= 
= 240 in²
Total surface area = 1760 + 2(240)
= 1760 + 480
= 2240 in²
Volume = Area of the triangular base × Height
= 240 × 20
= 4800 in³
Answer: <RPS = 161
Step-by-step explanation:
P is the common vertex in all of these angles. From this we know that these have to be adjacent angles (<QPR and <QPS) that equal the whole angle (<RPS)
<QPR+<QPS= <RPS
71+90= 161
(<QPS is a right angle. Right angles are equal to 90 degrees.)