Answer:
imaginary number and a real number
Answer:
Step-by-step explanation:
<h3>A.</h3>
The equation for the model of the geyser is found by substituting the given upward velocity into the vertical motion model. The problem statement tells us v=69. We assume the height is measured from ground level, so c=0. Putting these values into the model gives ...
h(t) = -16t² +69t
__
<h3>B.</h3>
The maximum height is at a time that is halfway between the zeros of the function.
h(t) = -16t(t -4.3125) . . . . . has zeros at t=0 and t=4.3125
The maximum height will occur at t=4.3125/2 = 2.15625 seconds. The height at that time is ...
h(t) = -16(2.15625)(2.15625 -4.3125) = 16(2.15625²) ≈ 74.39 . . . feet
The maximum height of the geyser is about 74.4 feet.
Answer:
1. 26.2
2. 5.7
3. 5.4
4. 20
Step-by-step explanation:
Answer:
Since the slopes of the two equations are equivalent, the basketballs' paths are parallel.
Step-by-step explanation:
Remember that:
- Two lines are parallel if their slopes are equivalent.
- Two lines are perpendicular if their slopes are negative reciprocals of each other.
- And two lines are neither if neither of the two cases above apply.
So, let's find the slope of each equation.
The first basketball is modeled by:

We can convert this into slope-intercept form. Subtract 3<em>x</em> from both sides:

And divide both sides by four:

So, the slope of the first basketball is -3/4.
The second basketball is modeled by:

Again, let's convert this into slope-intercept form. Add 6<em>x</em> to both sides:

And divide both sides by negative eight:

So, the slope of the second basketball is also -3/4.
Since the slopes of the two equations are equivalent, the basketballs' paths are parallel.