Crop monitoring makes use of space-based data to keep tabs on crop development and forecast crop yields for certain fields that have been planted.
<h3>What is monitoring systems?</h3>
A system for monitoring agriculture consists of a network with wireless sensors. These sensors gather information from several nodes positioned on the playing surface. Then, specialists or nearby farmers analyze this data. The data can be used to make a number of inferences about weather patterns, soil fertility, crop quality, etc. A system is developed for agricultural field monitoring in IoT-based modern agriculture with the aid of sensor like light, humid, temperatures, soil moisture, etc. Farmers may monitor the condition of thier fields from any location. IoT-based smart farming is considerably more efficient than conventional farming.
<h3>How do farmers monitor their crops?</h3>
Nowadays, satellite techniques are widely employed in agriculture, and many farmers use them frequently to observe their fields and assess the condition of their crops. Crop monitoring is crucial for managing various pests, weeds, and diseases that affect crops. This gives information about the crop's current situation, and you can then look ahead in time to forecast what will probably be the crop's next problem.
To know more about Monitoring Systems visit:
brainly.com/question/28776835
#SPJ1
Answer:
Abiotic factors such as latitude and temperature can impact biotic aspects of food web structure like the number of species, the number of links, as well as the proportion of basal or top species. These biotics factors can in turn influence network-structural aspects like connectance, omnivory levels or trophic level. In this way, plants make, or produce, the beginnings of most of the food energy on Earth. This is why plants are called producers. They use some of the food energy to carry out their own functions, and store the rest of the energy in their leaves, stems, roots and other parts.
Explanation:
Aneuploidy can result in the final daughter cell if the spindle fibers fail to pull a chromosome toward the pole as in case of non-disjunction.
Explanation:
Aneuploidy is a condition which arises when one or more chromosome is missing in the final daughter cells.
Non-disjunction refers to the failure of chromosomal or chromatid segregation or separation during cell division. This results in erroneous meiosis or mitosis leading to the formation of final daughter cells or gametes with an extra or missing chromosome. This condition is aneuploidy.
Failure of separation or segregation of:
- Homologous chromosomes occur in Anaphase I, affects four daughter cells.
- Sister chromatids during Anaphase II, affects two daughter cells
This failure of separation leads to aneuploidy chromosomal abnormalities like monosomy, trisomy, etc which can cause diseases like Down’s syndrome, Turner’s syndrome etc.
A. Hormones
secreted directly into the blood
Given what we know, we should observe the objects falling at the same speed in both the tower and vacuum scenarios, but not in the water.
<h3>What affects the speeds at which these objects fall?</h3>
- The falling speeds in both air and a vacuum will be the same for both objects.
- This is because falling speed is determined by gravity and is independent of the mass of the objects falling.
- The same will occur in water if and only if the densities of the two objects are equal.
Therefore, given that we can safely assume that the densities of the two objects are different from one another, we can confirm that while the objects will fall at the same speed in air and in a vacuum, this will not be the case in the deep pool.
To learn more about gravity visit:
brainly.com/question/4783082?referrer=searchResults