Answer:
Step-by-step explanation:
A. Linear- the add up to 180
B. 3x-5+2x+3+4x+2=180
9x=180
x=20
C. plug x in
ABD- 55, DBK- 82, KBC- 43

<h3><u>Given </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>given </u><u>in </u><u>the </u><u>question </u><u>that</u><u>, </u><u> </u><u>Robin </u><u>is </u><u>flying </u><u>a </u><u>kite</u><u>. </u>
- <u>She </u><u>ties </u><u>the </u><u>5</u><u>0</u><u> </u><u>foot </u><u>kite </u><u>string </u><u>to </u><u>the </u><u>ground </u><u>.</u>
- <u>The</u><u> </u><u>kite </u><u>is </u><u>flying </u><u>at </u><u>4</u><u>0</u><u> </u><u>feet </u><u>high </u>
<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>measure </u><u>of </u><u>the </u><u>angle </u><u>the </u><u>string </u><u>forms </u><u>with </u><u>the </u><u>group </u><u>that </u><u>is </u><u>angle </u><u>of </u><u>elevation</u><u>. </u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
<u>According </u><u>to </u><u>the </u><u>given</u><u> </u><u>question</u><u>, </u>
- Hypotenuse AC ( Distance of string from the ground) = 50 ft.
- Perpendicular height AB ( Distance of the kite from the ground) = 40 ft.
<h3><u>Therefore</u><u>, </u></h3>
<u>By </u><u>using </u><u>trigonometric </u><u>ratios</u><u>,</u><u> </u>
{ 

}
<u>The </u><u>Angle </u><u>of </u><u>elevation </u><u>will </u><u>be </u>
<u>[</u><u> </u><u>The </u><u>angle </u><u>that </u><u>is </u><u>formed </u><u>between </u><u>the </u><u>line </u><u>of </u><u>sight </u><u>and </u><u>base </u><u>of </u><u>the </u><u>triangle </u><u>is </u><u>called </u><u>angle </u><u>of </u><u>elevation </u><u>]</u>





Hence, The measure of the angle the string forms with the ground is 45.83° .
Answer:
6
Step-by-step explanation:
I'm not sure if you mean whether a = -3, but if you are to plug in -3 for a you should get:

Intersection
x - 7,0
y - 0,-4
1.30 represents the rate of growth of the mold spores. This decimal is a representation of the percentage growth, which would be 130%.
Since the function is written in terms of weeks, x will equal 4 to represent the amount of spores after 4 weeks. Plug the value into the function:

Rounded to the nearest ones value, there will be 985 mold spores after 4 weeks.