A. One substance must dissolve in another
Answer:
b. The internal resistance must be much smaller than the other resistances in the circuit.
Explanation:
Ammeter is used to measure the current flowing through a circuit. It is connected in series configuration with the load. In such a scenario the resistance of the ammeter should be negligible so as to make sure that the voltage drop across the resistance of ammeter is zero and it shows the correct reading of the current in the circuit.
For this question we should apply
a = v^2 - u^2 by t
a = 69 - 0 by 4.5
a = 69 by 4.5
a = 15.33
a = 6.85 m/s^2
If the answer in option is near to answer then , you can mark it as correct.
.:. The acceleration is 6.9 m/s^2
Answer:
170 N
Explanation:
Given in the question that, work a bulldozer can do = 4500 J
<h3>
Step 1</h3>
We will use trigonometry identity to find the distance bulldozer will travel up the hill
sin(35) = opp/hypo
sin(35) = 15/hypo
hypo = 15/sin(35)
hypo = 26.15m
<h3>Step 2</h3>
Formula to use
work done = force × distance
Plug values in the above formula
4500 = force x 26.15
force = 4500/26.15
force = 172.08
force ≈ 170 N
<h3 /><h3 /><h3 />
Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>