Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Answer:
a. They will be tie
b. Win the wood cylinder
Explanation:
a.
The both cylinders will reach the bottom at the same time notice the relation in the equation in indepent of the length and both have the same radius and the same rotational inertia.


So both will be tie
b.

The acceleration of the wood cylinder is larger than the acceleration of the brass cylinder so the cylinder of wood will reach the bottom first

So the wood win the race
The answer is no. If you are dealing with a conservative force and the object begins and ends at the same potential then the work is zero, regardless of the distance travelled. This can be shown using the work-energy theorem which states that the work done by a force is equal to the change in kinetic energy of the object.
W=KEf−KEi
An example of this would be a mass moving on a frictionless curved track under the force of gravity.
The work done by the force of gravity in moving the objects in both case A and B is the same (=0, since the object begins and ends with zero velocity) but the object travels a much greater distance in case B, even though the force is constant in both cases.
Answer:
Find answers below.
Explanation:
Given the following data;
Voltage = 220V
Current = 15 A
a. To find the power;
Power = current * voltage
Power = 15 * 220
Power = 3300 Watts
b. To find the energy;
Time = 8 hours = 60 * 60 * 8 = 28800 seconds
Energy = power * time
Energy = 3300 * 8
Energy = 26400
Energy = 26.4 Kwh
c. Cost = 13 cents
Cost = 13 * 31 * 26.4
Cost = 106392 cents