Answer:
F = 6666.7 N
Explanation:
Given that,
Mass of a chip, m = 0.1 mg
Initial speed, u = 0
Final speed,
Time of collision,
We know that,
Force, F = ma
Put all the values,

So, the required force is 6666.7 N.
Answer:
a is a good answer
Explanation:
because most items whether clothes or things we eat with, are made with something natural and recycled
<span>Adenosine triphosphate (ATP) consists of an adenosine molecule bonded to three phophate groups in a row. In a process called cellular respiration, chemical energy in food is converted into chemical energy that the cell can use, and stores it in molecules of ATP. This occurs when a molecule of adenosine diphosphate (ADP) uses the energy released during cellular respiration to bond with a third phosphate group, becoming a molecule of ATP. So the energy from cellular respiration is stored in the bond between the 2nd and 3rd phosphate groups of ATP. When the cell needs energy to do work, ATP loses its 3rd phosphate group, releasing energy stored in the bond that the cell can use to do work. Now its back to being ADP and is ready to store the energy from respiration by bonding with a 3rd phosphate group. ADP and ATP constantly convert back and forth in this manner.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:

Explanation:
In this question we have given

we have to find

We know that
optical path difference for bright fringe is given as
Here,
n is order of fringe
and optical path difference for dark fringe is given as
since the light with wavelength
produces its third-order bright fringe at the same place where the light with wavelength
produces its fourth dark fringe
it means
optical path difference for 3rd order bright fringe= optical path difference for forth order dark fringe
Therefore,
...............(1)
Put value of
in equation (1)



The question is missing alternatives. Here is the complete question.
An infrared spectrometer on Dawn found something unexpected on Ceres's surface. Its presence suggested that Ceres might have formed farther from the Sun, or been impacted by objects from a more-distant part of the solar system. What was this finding?
1. The fact that Ceres is covered with small dark particles that appear identical to the composition of Uranus's rings.
2. The presence of a thick cloud layer made of sulfuric acid, similar to what is observed at Venus.
3. The presence of clay-like minerals with ammonia bound up in them.
4. The infrared spectrum of Ceres's surface is essentially identical to that of most objects in the Kuiper Belt.
Answer: 3. The presence of clay-like minerals with ammonia bound up in them.
Explanation: The discovery of ammonia clay-like minerals in Ceres is surprising because it would be encoutered in planets that are far from the Sun, since ammonia requires colder temperatures, which is found beyond Jupiter's orbit, to condense. This finding can ascertain not only the origins of the dwarf planet as how the solar system was formed, were organized and evolved, because understanding where smaller planets are formed is important to determine their destiny.