Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.
Answer:
1200Hz
Explanation:
You would have to multiply 12 by 100 to get the answer.
12 • 100 = 1200 Hz
I hope it helps! Have a great day!
Anygays-
You pick up the hula hoop and stand inside of it then pick it up will you’re inside it and hold to your waist and spin it then turn your hips
Answer:
The energy stored is 1.4 x 10^-9 J.
Explanation:
Side of square, L = 10 cm = 0.1 m
Distance, d = 2 mm = 0.002 m
Electric field, E = 4000 V/m
The energy stored in the capacitor is

The capacitance is given by

Answer:
okay sooo the weight is: 294 n
the normal force is 286 n
the acceleration is: -0.38 m/s²