"with the wind" is a tail-wind, and the speeds are added to get the groundspeed.
"against the wind" is a head-wind, and the windspeed is subtracted from the airspeed.
Answer:
Explanation:
When 2 gms of steam condenses to water at 100 degree latent heat of vaporization is releases which is calculated as follows
Heat released = mass x latent heat of vaporization
= 2 x 2260 = 4520 J
When 2 gms of water at 100 degree is cooled to ice water at zero degree heat is releases which is calculated as follows
Heat released = mass x specific heat x( 100-0)
= 2 x 4.2 x 100 = 840 J
When 2 gms of water at zero degree condenses to ice at zero degree latent heat of fusion is releases which is calculated as follows
Heat released = mass x latent heat of fusion
= 2 x 334 = 668 J
When 2 grams of steam at 100 degrees Celsius turns to ice at 0 degrees Celsius heat released will be sum of all the heat released as mentioned above ie
4520 + 840 +668 = 6028 J
It's a quantitative observation because it includes numerical data.
K is cation by losing of electron whereas Br is anion due to accepting of electrons.
<h3 /><h3>Is charge appears when an atom lose or accept electron?</h3>
Yes, the positive ion appears on K and become cation whereas the negative ion bears on Br which make it anion because of losing and gaining of electron by these atoms. This transferring of electrons leads to formation of ionic bonds between them.
So we can conclude that K is cation by losing of electron whereas Br is anion due to accepting of electrons.
Learn more about ionic bond here: brainly.com/question/2687188
#SPJ1