The temperature of the gas is proportional to the average kinetic energy of its molecules. Faster moving particles will collide with the container walls more frequently and with greater force. This causes the force on the walls of the container to increase and so the pressure increases.
Organisms within each group are then further divided into smaller groups. These smaller groups are based on more detailed similarities within each larger group. This grouping system makes it easier for scientists to study certain groups of organisms.
Answer:
Explanation:
<u>1) Equilibrium equation (given):</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
<u>2) Write the concentration changes when some concentration, A, of CH₂Cl₂ (g) sample is introduced into an evacuated (empty) vessel:</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - x x x
<u>3) Replace x with the known (found) equilibrium concentraion of CCl₄ (g) of 0.348 M</u>
- 2CH₂Cl₂ (g) ⇄ CH₄ (g) + CCl₄ (g)
A - 0.3485 0.348 0.348
<u>4) Write the equilibrium constant equation, replace the known values and solve for the unknown (A):</u>
- Kc = [ CH₄ (g) ] [ CCl₄ (g) ] / [ CH₂Cl₂ (g) ]²
- A² = 56.0 / 0.348² = 462.
All of them are correct! good!!
A. It absorbs energy.
reactants are located on the left side of the equation, meaning energy among with other reactants were needed to get the reaction going, so it absorbed energy, which is also the endothermic process. The opposite of that would be having energy on the right side with the products which means that the reaction would've released energy which is the exothermic process. Hope this helps!