
3mols of fluorine produce 2 mol chlorine
1 mol fluorine produces 2/3=0.6mol chlorine
Moles of fluorine gas=
Moles of chlorine:-
Mass of chlorine
The equilibrium membrane potential is 41.9 mV.
To calculate the membrane potential, we use the <em>Nernst Equation</em>:
<em>V</em>_Na = (<em>RT</em>)/(<em>zF</em>) ln{[Na]_o/[Na]_ i}
where
• <em>V</em>_Na = the equilibrium membrane potential due to the sodium ions
• <em>R</em> = the universal gas constant [8.314 J·K^(-1)mol^(-1)]
• <em>T</em> = the Kelvin temperature
• <em>z</em> = the charge on the ion (+1)
• <em>F </em>= the Faraday constant [96 485 C·mol^(-1) = 96 485 J·V^(-1)mol^(-1)]
• [Na]_o = the concentration of Na^(+) outside the cell
• [Na]_i = the concentration of Na^(+) inside the cell
∴ <em>V</em>_Na =
[8.314 J·K^(-1)mol^(-1) × 293.15 K]/[1 × 96 485 J·V^(-1)mol^(-1)] ln(142 mM/27 mM) = 0.025 26 V × ln5.26 = 1.66× 25.26 mV = 41.9 mV
Answer:

Explanation:
Hello there!
In this case, according to the given data, it is possible to infer that the gas mixture lies on the 15.0 cm-high column of water, so that the total pressure or atmospheric pressure is given by:

Thus, since the atmospheric pressure is 745 mmHg and the vapor pressure of water is 18 mmHg, the pressure of hydrogen turns out to be:

Best regards!
The primary colors are blue, red, and yellow.
What I can’t understand I’m American