Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
Explanation:
temperature changes affect seawater density as water cools its density increases. As water cools H2O molecules pack more closely together because the molecules are vibrating less at low temperatures and take up less volume. The same number of water molecules in smaller volume results higher density
Answer: 4.18925 kJ heat is needed to convert 25.0 g of solid ethanol at -135 °C to liquid ethanol at -50°C.
Explanation:
Temperature of Solid
Melting temperature of Solid 
Temperature of liquid 
Specific heats of solid ethanol = 0.97 J/gK
Specific heats of liquid ethanol = 2.3 J/gK
Heat required to melt the the 25 g solid
at 159 K
= 159 K - 138 K = 21 K

Heat required to melt and raise the temperature of
upto 223 K
= 223 K - 159 K = 64 K

Total heat to convert solid ethanol to liquid ethanol at given temperature :
(1kJ=1000J)
Hence, 4.18925 kJ of heat will be required to convert 25.0 g of solid ethanol at -135 °C to liquid ethanol at -50°C.
Answer:
D) There must be equal number of atoms of each elements on both sides of equation.
Explanation:
The balancing equation must have equal number of atoms of each elements on both sides of equation.
The balance equation shoes mass is conserved thus followed the law of conservation of mas.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Alloys are supposed to give greater strength to metals, which is why gold is mixed with others to make it harder. They have greater strength and are more resistant to erosion.