Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
Answer:
Volume of the solutions
This is the most important factor for her to control.
It is a binary direct bandgap semiconductor commonly used in light-emitting diodes since the 1990s
Answer:
3.5 × 10⁵ g of salt
Explanation:
<em>What is the mass (grams) of salt in 10.0 m³ of ocean water?</em>
We have this data:
- 1.000 mol salt is equal to 58.44 g salt
- 1.0 L of ocean water contains 0.60 mol of salt
We will need the following relations:
We can use proportions:
