Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Answer:
ρ = 7500 kg/m³
Explanation:
Given that
mass ,m = 12 kg
Displace volume ,V= 1.6 L
We know that
1000 m ³ = 1 L
Therefore V= 0.0016 m ³
When metal piece is fully submerged
We know that
mass = Density x volume

Now by putting the values in the above equation

ρ = 7500 kg/m³
Therefore the density of the metal piece will be 7500 kg/m³.
Answer:
False
Explanation:
As we know that, the Balmer series gives the n values as,
.
.
Now the value of wavelength can be calculated as,
.
Here,
.
And
.
Now,
.
Therefore,

Therefore, the wavelength of Balmer series lies in visible region which is 547 nm.
Answer:
Explanation: Determine the gravitational acceleration. ...
Decide whether the object has an initial velocity. ...
Choose how long the object is falling. ...
Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt
Answer:
W / n = - 9133 J / mol, W / n = 3653 J / mol
, e = 0.600
Explanation:
The Carnot cycle is described by
In this case they indicate that the final volume is
V = 3V₀
In the part of the heat absorption cycle from the source is an isothermal expansion
W = n RT ln (V₀ / V)
W / n = 8.314 1000 ln (1/3)
W / n = - 9133 J / mol
During the part of the isothermal compression in contact with the cold focus, as in a machine the relation of volumes is maintained in this part is compressed three times
W / n = 8.314 400 (3)
W / n = 3653 J / mol
The efficiency of the cycle is
e = 1- 400/1000
e = 0.600