The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
Answer:
Part a)


Part b)

Explanation:
Part a)
Constant speed by which the student will run is given as

now after some time if student is going to overtake the position of bus
so here the final positions will be same
so we have




so it is

So student will run the total distance



Part b)
Speed of bus when student reach the bus is given as



<u>Weight = (mass) x (acceleration of gravity)</u>
Divide each side by (mass),and we have
Acceleration of gravity = (weight) / (mass)
Acceleration of gravity = 2,970/90 = 33 newtons per kilogram = <em>33 m/s²</em>
The acceleration of the electron is larger than the acceleration of the proton.
The reason for this is that the mass of the electron is smaller (about 1000 times smaller) than the mass of the proton. The two particles have same charge (e), so they experience the same force under the same electric field E:
However, according to Newton's second law, the force is the product between the mass particle, m, and its acceleration, a:
which can be rewritten as

we said that the force exerted on the two particles, F, is the same, while the mass of the electron is smaller: therefore, from the last formula we see that the acceleration of the electron will be larger than that of the proton.
THE ANSWER IS : THERE ARE ONLY ABOUT 100 DIFFERENT KINDS OF ATOMS THAT COMBINE TO FORM ALL SUBSTANCES
Explanation: