1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
3 years ago
8

Find a parametric representation for the surface. The plane through the origin that contains the vectors i - j and j - k

Physics
1 answer:
boyakko [2]3 years ago
3 0

Answer:

parametric representation: x = u, y = v - u ,  z = - v

Explanation:

Given vectors :

i - j ,  j - k

represent the vector equation of the plane as:

r ( u, v ) = r₀ + <em>u</em>a + vb

where:  r₀ = position vector

            u and v = real numbers

             a and b = nonparallel vectors

expressing the nonparallel vectors as :

a = i -j , b = j - k , r = ( x,y,z ) and r₀ = ( x₀, y₀, z₀ )

hence we can express vector equation of the plane as

r(u,v) = ( x₀ + u, y₀ - u + v,  z₀ - v )

Finally the parametric representation of the surface through (0,0,0) i.e. origin = 0

( x, y , z ) = ( x₀ + u,  y₀ - u + v,   z₀ - v )

x = 0 + u ,

y = 0 - u + v

z = 0 - v

∴ parametric representation: x = u, y = v - u ,  z = - v

You might be interested in
A straight fin is made from copper (k = 388 W/m-K) and is 0.5 cm in diameter and 30 cm long. The temperature at the base of the
erastovalidia [21]

Answer:

The rate of transfer of heat is 0.119 W

Solution:

As per the question:

Diameter of the fin, D = 0.5 cm = 0.005 m

Length of the fin, l =30 cm = 0.3 m

Base temperature, T_{b} = 75^{\circ}C

Air temperature, T_{infty} = 20^{\circ}

k = 388 W/mK

h = 20\ W/m^{2}K

Now,

Perimeter of the fin, p = \pi D = 0.005\pi \ m

Cross-sectional area of the fin, A = \frac{\pi}{4}D^{2}

A = \frac{\pi}{4}(0.5\times 10^{-2})^{2} = 6.25\times 10^{- 6}\pi \ m^{2}

To calculate the heat transfer rate:

Q_{f} = \sqrt{hkpA}tanh(ml)(T_{b} - T_{infty})

where

m = \sqrt{\frac{hp}{kA}} = \sqrt{\frac{20\times 0.005\pi}{388\times 6.25\times 10^{- 6}\pi}} = 41.237

Now,

Q_{f} = \sqrt{20\times 388\times 0.005\pi\times 6.25\times 10^{- 6}\pi}tanh(41.237\times 0.3)(75 - 20) = 0.119\ W

5 0
3 years ago
A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per un
Zarrin [17]

Answer:

steady state temperature =88.7deg C

t=time within  1 deg C of it steady state is 8.31s

Explanation:

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

The diameter of the wire is known to be=1mm

properties=

The density of the wire is 8,000 kg/m3,

heat capacity is 500 J/kgK

themal conductivity is 20W/m.K

electrical resistance per unit length of 0.01 Ω/m

from lump capavity method

B_{i} =\frac{hr/2}{k}

500*(2.5*10^-4)/20

0.006<0.1

we know also, to find steady state temperature

\piDh(T-Tinf)=I^{2} R_{e}

make T the subject of the equation , we have

T=25+\frac{100^2*0.01}{\pi*0.001*500 }

T=88.7 degC

rate of chnage in temperature

dT/dt=\frac{I^2*Re}{rho*c*\pi*D^2/4 } -\frac{4h}{rho*c*D} (T-Tinf)

at t=o and integrating both sides\frac{T-Tinf-(I^2*Re/\pi*Dh) }{Ti-Tinf-(I^2*Re/\pi*Dh } =exp\frac{-4ht}{rho*c*D}

we have

\frac{87.7-25-63.7}{25-25-63.7} =exp\frac{4*500t}{8000*500*0.001}

t=8.31s

steady state temperature =88.7deg C

t=time within  1 degC of it steady stae is 8.31s

7 0
3 years ago
Y u y u bully me121212121
Ede4ka [16]

Answer:

wassup

Explanation:

3 0
3 years ago
Read 2 more answers
You drive a bumper car into another bumper car whos driver has a much larger body mass than you do? Who experience more of a jol
pav-90 [236]
The other driver unexpectedly
4 0
3 years ago
Briefly describe the three intelligences included in Robert Sternberg’s triarchic theory of human intelligence.
pshichka [43]
The triarchic theory of intelligence<span> was formulated by </span>Robert J. Sternberg<span>, a prominent figure in research of human </span>intelligence<span>. The theory by itself was among the first to go against the </span>psychometric<span> approach to intelligence and take a more </span>cognitive approach<span>. The three meta components are also called triarchic components. These are the triarchic theory of human intelligence.
</span>1. Analytical - Analytical Intelligence similar to the standard psychometric definition of intelligence e.g. as measured by Academic problem solving: analogies and puzzles, and corresponds to his earlier componential intelligence. Sternberg considers this reflects how an individual relates to his internal world.

Sternberg believes that Analytical Intelligence (Academic problem-solving skills) is based on the joint operations of metacomponents and performance components and knowledge acquisition components of intelligence

2. Practical - Practical Intelligence: this involves the ability to grasp, understand and deal with everyday tasks. This is the Contextual aspect of intelligence and reflects how the individual relates to the external world about him or her.

<span>Sternberg states that Intelligence is: </span>"Purposive adaptation to, shaping of, and selection of real-world environments relevant to one's life" (Sternberg, 1984, p.271)

3. Creative - Creative Intelligence: this involves insights, synthesis and the ability to react to novel situations and stimuli. This he considers the Experiential aspect of intelligence and reflects how an individual connects the internal world to external reality.

<span>Sternberg </span>considers the Creative facet to consist of the ability which allows people to think creatively and that which allows people to adjust creatively and effectively to new situations.

<span>Sternberg believes that more intelligent individuals will also move from consciously learning in a novel situation to automating the new learning so that they can attend to other tasks.</span>

7 0
4 years ago
Other questions:
  • 100 J of work in 10 seconds
    14·1 answer
  • A tightly sealed glass jar is an example of which type of system?
    15·2 answers
  • Which of the following is true about parallax?
    14·2 answers
  • What causes a hypothesis to be rejected?
    8·1 answer
  • Which term describes the amount of charge that passes a point in a circuit<br> each second?
    12·2 answers
  • Imagine you and your friend are trying to rearrange the furniture in your classroom. You push on a desk with a force of 100 n to
    14·1 answer
  • Consider two conducting spheres with one having a larger radius than the other. Both spheres carry the same amount of excess cha
    11·1 answer
  • HELP!!!
    14·1 answer
  • _____ waves are Longitudinal waves caused by an earthquake!
    7·2 answers
  • Suppose the maximum power delivered by a car's engine results in a force of 16000 N on the car by the road. In the absence of an
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!