Answer:
parametric representation: x = u, y = v - u , z = - v
Explanation:
Given vectors :
i - j , j - k
represent the vector equation of the plane as:
r ( u, v ) = r₀ + <em>u</em>a + vb
where: r₀ = position vector
u and v = real numbers
a and b = nonparallel vectors
expressing the nonparallel vectors as :
a = i -j , b = j - k , r = ( x,y,z ) and r₀ = ( x₀, y₀, z₀ )
hence we can express vector equation of the plane as
r(u,v) = ( x₀ + u, y₀ - u + v, z₀ - v )
Finally the parametric representation of the surface through (0,0,0) i.e. origin = 0
( x, y , z ) = ( x₀ + u, y₀ - u + v, z₀ - v )
x = 0 + u ,
y = 0 - u + v
z = 0 - v
∴ parametric representation: x = u, y = v - u , z = - v