Answer:
0.9
Explanation:
h = 400 mm, h' = 325 mm
Let the coefficient of restitution be e.
h' = e^2 x h
325 = e^2 x 400
e^2 = 0.8125
e = 0.9
Answer:
Valley-river Landslide-Gravity Frost wedging- Glacier Canyon-Ice.
Explanation:
I think that's right
Answer:
For an atom to become totally stable, it needs to have a full outer shell. To do this, two or more atoms will share or give away electrons to each other in a process called bonding.
Explanation:
When an atom loses or gains an electron, it becomes an ion. If it gains an electron, it's a cation, and if it loses one, it's an anion. This happens most commonly in chemical reactions, in which atoms share electrons to form a stable outer shell of 8. For example, the water molecule consists of two hydrogen atoms and an oxygen atom.
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>