A white ring buoy appears<u> blue</u> because the blue plastic <u>absorbs</u> all colors of light except blue. Only the blue light <u>reflected from</u> the ring buoy passes through the blue plastic.
Answer:
(a) 23.946 kV
(b) -0.077 J
Explanation:
(a) The electric potential is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
q1 = q2 = 1.60*10^{-6}C
r1 and r2 are the distance from the charges to the point in which electric potential is evaluated.
Firs, you calculate the distance r1 and r2 by taking into account the position of the charges

Next, you replace the values of the parameters to calculate V:

(b) The potential electric energy is given by:
![U_T=U_{1,2}+U_{1,3}+U_{2,3}\\\\U_T=k\frac{q_1q_2}{r_{1,2}}+k\frac{q_1q_3}{r_{1,3}}+k\frac{q_2q_3}{r_{2,3}}\\\\r_{1,2}=2.00m\\\\r_{1,3}=1.20m\\\\r_{2,3}=1.20m\\\\U_T=(8.98*10^9)[\frac{(1.6*10^{-6})^2}{2.00m}+\frac{(1.6*10^{-6})(-3.70*10^{-6})}{1.20}+\frac{(1.6*10^{-6})(-3.70*10^{-6})}{1.20}]J\\\\U_T=-0.077J](https://tex.z-dn.net/?f=U_T%3DU_%7B1%2C2%7D%2BU_%7B1%2C3%7D%2BU_%7B2%2C3%7D%5C%5C%5C%5CU_T%3Dk%5Cfrac%7Bq_1q_2%7D%7Br_%7B1%2C2%7D%7D%2Bk%5Cfrac%7Bq_1q_3%7D%7Br_%7B1%2C3%7D%7D%2Bk%5Cfrac%7Bq_2q_3%7D%7Br_%7B2%2C3%7D%7D%5C%5C%5C%5Cr_%7B1%2C2%7D%3D2.00m%5C%5C%5C%5Cr_%7B1%2C3%7D%3D1.20m%5C%5C%5C%5Cr_%7B2%2C3%7D%3D1.20m%5C%5C%5C%5CU_T%3D%288.98%2A10%5E9%29%5B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%5E2%7D%7B2.00m%7D%2B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%28-3.70%2A10%5E%7B-6%7D%29%7D%7B1.20%7D%2B%5Cfrac%7B%281.6%2A10%5E%7B-6%7D%29%28-3.70%2A10%5E%7B-6%7D%29%7D%7B1.20%7D%5DJ%5C%5C%5C%5CU_T%3D-0.077J)
Answer:
0.36
Explanation:
The maximum force of friction exerted by the surface is given by:
(1)
where
is the coefficient of friction
N is the normal reaction
The shed's weight is 2200 N. Since there is no motion along the vertical direction, the normal reaction is equal and opposite to the weight, so
N = 2200 N
The horizontal force that is pushing the shed is
F = 800 N
In order for it to keep moving, the force of friction (which acts horizontally in the opposite direction) must be not greater than this value. So the maximum force of friction must be

And substituting the values into eq.(1), we can find the maximum value of the coefficient of friction:

The Magnitude of the Vector is 10.39m and the direction of the vector is - 46.7°.
<u>Explanation:</u>
GIven dx=7.14m and dy= -7.55m,
The Magnitude of the Vector=
Magnitude d=
.
d=
d=
d= 10.39m.
Direction Ф = 

=
=
(-1.06)
Ф = - 46.7°.
Answer:
The final velocity of your motion is 19.5 m/s.
Explanation:
Given;
initial velocity of your motion, u = -3.0 m/s
acceleration of your motion, a = 2.5 m/s²
time of your motion, t = 9.0 s
The final velocity of your motion is calculated as follows;
v = u + at
where;
v is the final velocity
substitute the given values and solve for v
v = -3.0 + (2.5 x 9)
v = -3.0 + 22.5
v = 19.5 m/s
Therefore, the final velocity of your motion is 19.5 m/s.