Answer:
Explanation:stop it cause the sun don't shine that long unless if it's summer cause the summer time is very hot it may be 100 degrees or lower
1). trajectory
2). person sitting in a chair
3). 490 meters
4). 65 m/s
5). False. The projectile's displacement, velocity, and acceleration have vertical and horizontal components, but the projectile doesn't.
6). False
7). The vertical component of a projectile doesn't change due to gravity, but the vertical components of its displacement, velocity, and acceleration do.
The vertical components do NOT equal the horizontal components.
8). Decreasing if you include the effects of air resistance. Constant if you don't. Gravity has no effect on horizontal velocity.
9). We can't see the simulation. But if the projectile doesn't have jets on it, then as it travels upward, its vertical velocity must decrease, because gravity is trying to not let it get away.
10). We can't see the simulation. But if the projectile is traveling downward, we would call that "falling", and its vertical velocity must increase, because gravity is pulling it downward.
Answer:
30 Watts
Explanation:
Power = Work/Time
Work = Force*Distance
Power = Force * Distance / Time
Power = 15 N * 20 meters / 10 sec
Power = 30 Watts
The change in electric potential energy will be converted to kinetic energy; thus:
K.E = 5.3 x 10⁻¹⁰ - 3.1 x 10⁻¹⁰
K.E = 2.2 x 10⁻¹⁰ Joules
Option D is correct.
Answer:
The temperature reported by a thermometer is never precisely the same as its surroundings
Explanation:
In this experiment to determine the specific heat of a material the theory explains that when a heat interchange takes place between two bodies that were having different temperatures at the start, the quantity of heat the warmer body looses is equal to that gained by the cooler body to reach the equilibrium temperature. <u>This is true only if no heat is lost or gained from the surrounding.</u> If heat is gained or lost from the surrounding environment, the temperature readings by the thermometer will be incorrect. The experimenter should therefore keep in mind that for accurate results, the temperature recorded by the thermometer is similar to that of the surrounding at the start of the experiment and if it differs then note that there is either heat gained or lost to the environment.