Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Answer: Explanation:
If the net force on an object is doubled, its acceleration will double If the mass of an object is doubled, the acceleration will be halved .
Answer:
E = 31.329 N/C.
Explanation:
The differential electric field
at the center of curvature of the arc is
<em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>
where
is the radius of curvature.
Now
,
where
is the charge per unit length, and it has the value

Thus, the electric field at the center of the curvature of the arc is:


Now, we find
and
. To do this we ask ourselves what fraction is the arc length 3.0 of the circumference of the circle:

and this is
radians.
Therefore,

evaluating the integral, and putting in the numerical values we get:


Answer:
Explanation:
average speed more than 25.0m/s.