Answer:
The answer is 3,064x
Explanation:
When the collision happens, the momentum of the first car is applied to the both of them.
So we can calculate the force that acts on both cars as:
- The momentum of the first car is P = 2020 kg x 14.2 m/s = 28,684 kg.m/s
- The acceleration of both cars after the crash is going to be a = P / mtotal which will give us a = 28,684 / (2020+2940) = 5.78 m/s
- Since the second car was initially not moving, the final acceleration was calculated with the momentum of the first car.
Now we can find the force that acts on both of them by using the formula F = m.a which will give us the result as:
- F = (2020+2940) x 5.78 = 28,684
The friction force acts in the opposite direction and if they stop after moving 2.12 meters;
- Friction force is Ff = μ x N where μ is the friction coefficient and the N is the normal force which is (2020+2940) x 10 if we take gravitational force as 10, equals to 49,600.
- F - Ffriction = m x V
- 28,684 - μ x 49,600 = 4960 x 5.78
- μ = 3,064x

The African law ensures that people who are living with HIV/AIDS are not discriminated by the society by emphasizing that they must be protected by the law and enjoy the rights like those people in good conditions. It is in their Bill of Rights that people with HIV/AIDs are not forced to tell others about their status instead they have to enjoy their right to privacy and confidentiality.
Answer:
98J
Explanation:
Given parameters:
Mass of rock = 5kg
Height = 2m
Unknown:
Work done = ?
Solution:
The amount of work done is given as:
Work done = Force x distance
Work done = Weight x height
Work done = mgH
Now insert the parameters and solve;
Work done = 5 x 9.8 x 2 = 98J
The total mechanical energy is the sum of the kinetic energy and the gravitational potential energy:

where m=3.5 kg is Candy's mass, v=1 m/s is her velocity and h=3.5 m is her height. If we replace these numbers, we find the mechanical energy of the system:
Chalres law and absolute zero . in 1780s, by experiments