<span>1. </span>To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 203 x 40.0 / 35.0
V2 =232 L
Answer:chlorofluorocarbons (CFCs)
halon.
carbon tetrachloride (CCl4)
methyl chloroform (CH3CCl3)
hydrobromofluorocarbons (HBFCs)
hydrochlorofluorocarbons (HCFCs)
methyl bromide (CH3Br)
bromochloromethane (CH2BrCl)
Explanation:
BRAINLIEST pls
Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.