
Ore is a deposit in Earth's crust of one or more valuable minerals. The most valuable ore deposits contain metals crucial to industry and trade, like copper, gold, and iron. Copper ore is mined for a variety of industrial uses. Copper, an excellent conductor of electricity, is used as electrical wire.
Answer:- Mass of the alloy is 2.8 kg.
Solution:- Mass of Cr in the alloy is 325 g and mass of Fe in the alloy is 2.5 kg. Mass of alloy would be the sum of masses of constituent metals.
Masses of the metals are not in the same units. So, we need to make the units equal. The want answer in kg so let's convert mass of Cr from g to kg.
Since, 1000 g = 1 kg
So, 
= 0.325 kg
Mass of alloy = mass of Cr + mass of Fe
mass of alloy = 0.325 kg + 2.5 kg = 2.825 kg
If we consider significant figures then as per the rules, the answer should not have more than one decimal place.
So, 2.825 kg is round off to 2.8 kg and hence the mass of the alloy is 2.8 kg.
The right subject for this question is physics.
To calculate the work you use the formula:
Work = force * displacement
Work = 2500 pounds * 30 feet = 75,000 pounds - feet
To calculate the power you use the formula:
power = work / time
Power = 75,000 pound - feet / 30 seconds = 2300 pound-feet / second.
4Al + 3K2SiF6 = 6KF + 3Si + 4AIF3 is the reaction for preparation of silicon by the reduction of K₂SiF6 with Al.
AlF3xH2O-based inorganic compounds are referred to as aluminium fluoride. They are all solids without colour. Aluminium fluoride is a crystalline (sand-like), odourless, white, or colourless powder. In addition to being used to make aluminium, it also functions as a flux in welding processes and in ceramic glazes and enamels.
Silicon (Si) is created by reducing potassium silicofluoride with aluminium as the reducing agent (K2SIF6). While K2SiF6 is reduced to Si in this equation, aluminium is oxidised to aluminium fluoride. As a result, the balanced equation describing aluminum's reduction of K2SiF6 to silicon non-metal is as follows: 4Al + 3K2SiF6 = 6KF + 3Si + 4AIF3
Learn more about aluminium fluoride here:
brainly.com/question/17131529
#SPJ4