Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
A chemical change affects on the molecular level of matter, which makes it irreversible. Combustion is a pretty good exmple. Physical changes are reversible and dont alter the formula. Hope this helped!
Answer:
From least polar covalent to most polar covalent;
S-I< Br-Cl < N-H< Te-O
From most ionic to least ionic
Cs-F> Sr-Cl> Li- N> Al-O
Explanation:
Electro negativity refers to the ability of an atom in a bond to attract the shared electrons of the bond towards itself.
Electro negativity difference between two atoms is a key player in the nature of bond that exists between any two atoms. A large difference in electron negativity leads to an ionic bond while an intermediate difference in electro negativity leads to a polar covalent bond.
Based on electro negativity differences, the bonds in the answer have been arranged in order of increasing polar covalent nature or decreasing ionic nature.
Answer:0.8742j/g°C
Explanation: SOLUTION
GIVEN
length of bar=1.25m
mass 382g
temperature= 20°C to 288°C
Q=89300J
Specific Heat Capacity will be calculated using
Q=mC∆T
where
C = specific heat capacity
Q = heat
m = mass
Δ T = change in temperature
C=Q/ m∆T
=89300/382X(288-20.6)
=0.8742j/g°C