Answer:
1. Caffeine, C₈H₁₀N₄O₂
Amount = 1.00/194 = 0.00515 moles
2. Ethanol, C₂H₅OH
Amount = 0.0217 moles
3. Dry Ice, CO₂
amount = 0.0227 moles
<em>Note: The question is incomplete. The compound are as follows:</em>
<em> 1. Caffeine, C₈H₁₀N₄O₂;</em>
<em>2. Ethanol, C₂H₅OH;</em>
<em>3. Dry Ice, CO₂</em>
Explanation:
Amount (moles) = mass in grams /molar mass in grams per mole
1. Caffeine, C₈H₁₀N₄O₂
molar mass of caffeine = 194 g/mol
Amount = 1.00 g/194 g/mol = 0.00515 moles
2. Ethanol, C₂H₅OH
molar mass of ethanol = 46 g/mol
Amount = 1.00 g/46 g/mol = 0.0217 moles
3. Dry Ice, CO₂
molar mass of dry ice = 44 g/mol
amount = 1.00 g/44 g/mol = 0.0227 moles
Answer:
cerium (iii) sulfate is less soluble
Answer:

Explanation:
First of all we need to calculate the heat that the water in the cooler is able to release:

Where:
- Cp is the mass heat capacity of water
- V is the volume
is the density


To calculate the mass of CO2 that sublimes:

Knowing that the enthalpy of sublimation for the CO2 is: 


The rate law depicts the effect of concentration on reaction rate. Second mechanism 2NO(g) ⇄ N₂O₂(g) [fast], N₂O₂(g) + O₂(g) → 2NO₂(g) [slow] is most reasonable. Thus, option b is correct.
<h3>What is rate law?</h3>
Rate law and equation give the rate at which the reaction takes place under the influence of the concentration of the reactants. The balanced chemical reaction is given as,
2NO(g) + O₂(g) → 2NO₂(g)
The rate of the equation is given as,
rate = k [NO]² [O₂]
In a multi-step chemical reaction, the slowest step is the rate-determining step. The second mechanism is given as,
2NO (g) → N₂O₂ (g) [fast]
N₂O₂(g) +O₂(g) → 2NO₂ (g) [slow]
Rate is given as,
rate = k [N₂O₂] [O₂]
Therefore, option b. the second mechanism is the most reasonable.
Learn more about rate law, here:
brainly.com/question/14779101
#SPJ4