When the alkanes below are chlorinated they produce 3 monochloro substitution products. These isomers have the same chemical formula, but their atoms arrangements are different.
What are constitutional versus isomeric isomers?
Although structural (constitutional) isomers share the same chemical formula but their atoms are bonded in a different way. Stereoisomers have the same atomic configurations and chemical formulae. The groups' spatial orientation is the only thing which distinguishes the molecules distinguishes them from one another.
What are instances of stereoisomers?
According to the general definition of stereoisomers, stereoisomers are isomers with the same composition (i.e., the same parts), but different orientations in space. Stereoisomers are of two different types which are enantiomers and diastereomers.
Learn more about stereoisomers from the link given below.
brainly.com/question/13839157
#SPJ4
Because it can be balanced in an infinite number of ways so it would need to be rewritten in a simpler form.
Slime flows like a liquid, but unlike familiar liquids (e.g., oil, water), its ability to flow, or viscosity, is not constant. So it's a fluid, but not a regular liquid. Scientists call a material that changes viscosity a non-Newtonian fluid. The technical explanation is that slime is a fluid that changes its ability to resist deformation according to shear or tensile stress.
What this means is, when you pour slime or let it ooze through your fingers, it has a low viscosity and flows like a thick liquid. When you squeeze a non-Newtonian slime, like oobleck, or pound it with your fist, it feels hard, like a wet solid. This is because applying stress squeezes the particles in the slime together, making it hard for them to slide against each other.
Most types of slime are also examples of polymers. Polymers are molecules made by linking together chains of subunits.
The specifics of how a type of slime works depends on its chemical composition, but the basic explanation is that chemicals are mixed to form polymers. The polymers act as a net, with molecules sliding against each other.
Two solutions are combined to make classic slime. One is diluted school glue, or polyvinyl alcohol in water. The other solution is borax (Na2B4O7.10H2O) in water.
Borax dissolves in water into sodium ions, Na+, and tetraborate ions.
The tetraborate ions react with water to produce the OH- ion and boric acid:
B4O72-(aq) + 7 H2O <—> 4 H3BO3(aq) + 2 OH-(aq)
Boric acid reacts with water to form borate ions:
H3BO3(aq) + 2 H2O <— > B(OH)4-(aq) + H3O+(aq)
Hydrogen bonds form between the borate ion and the OH groups of the polyvinyl alcohol molecules from the glue, linking them together to form a new polymer: slime.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
seneca
past papers
take notes from videos
Explanation:
very good website, asks questions about the subject correct for your exam board and gives correct answers and explanations
exam papers always help