Answer:
x = 2 ± 2 sqrt(5)i
Step-by-step explanation:
(x – 2)^2 + 20 = 0
Subtract 20 from each side
(x – 2)^2 + 20 -20=0 -20
(x – 2)^2 =- 20
Take the square root of each side
sqrt((x – 2)^2) =±sqrt(- 20)
x-2 = ±sqrt(- 20)
We know sqrt(ab) = sqrt(a) sqrt(b)
x-2 = ±sqrt(- 1) sqrt(20)
We know the sqrt (-1) = i
x-2 = ±i sqrt(4*5)
x-2 = ±i sqrt(4) sqrt(5)
Add 2 to each side
x-2+2 = 2 ±i sqrt(4) sqrt(5)
x = 2 ±i 2 sqrt(5)
x = 2 ± 2 sqrt(5)i
Answer:
a no solution
b is all real numbers
c x=12
Step-by-step explanation:
a has no values of x that make it true
b any value of x makes it true
c simplify both sides of the equation then isolate x
The answer is: z² .
__________________________
Given: <span>(x÷(y÷z))÷((x÷y)÷z) ; without any specified values for the variables;
_______________________
we shall simplify.
___________________
We have:
__________
</span>(x÷(y÷z)) / ((x÷y)÷z) .
_____________________________________
Start with the first term; or, "numerator": (x÷(y÷z)) ;
_____________________________________
x ÷ (y / z) = (x / 1) * (z / y) = (x * z) / (1 *y) = [(xz) / y ]
_____________________________________
Then, take the second term; or "denominator":
_____________________________________
((x ÷ y) ÷z ) = (x / y) / z = (x / y) * (1 / z) = (x *1) / (y *z) = [x / (zy)]
_________________________________________
So (x÷(y÷z)) / ((x÷y)÷z) = (x÷(y÷z)) ÷ ((x÷y)÷z) =
[(xz) / y ] ÷ [x / (zy)] = [(xz) / y ] / [x / (zy)] =
[(xz) / y ] * [(zy) / x] ;
_______________________________________
The 2 (two) z's "cancel out" to "1" ; and
The 2 (two) y's = "cancel out" to "1" ;
______________________________________________
And we are left with: z * z = z² . The answer is: z² .
______________________________________________
Answer:
6.5500
Step-by-step explanation: