We write the equation in terms of dy/dx,
<span>y'(x)=sqrt (2y(x)+18)</span>
dy/dx = sqrt(2y + 18)
dy/dx = sqrt(2) ( sqrt(y + 9))
Separating the variables in the equation, we will have:
<span>1/sqrt(y + 9) dy= sqrt(2) dx </span>
Integrating both sides, we will obtain
<span>2sqrt(y+9) = x(sqrt(2)) + c </span>
<span>where c is a constant and can be determined by using the boundary condition given </span>
<span>y(5)=9 : x = 5, y = 9
</span><span>sqrt(9+9) = 5/sqrt(2) + C </span>
<span>C = sqrt(18) - 5/sqrt(2) = sqrt(2) / 2</span>
Substituting to the original equation,
sqrt(y+9) = x/sqrt(2) + sqrt(2) / 2
<span>sqrt(y+9) = (2x + 2) / 2sqrt(2)
</span>
Squaring both sides, we will obtain,
<span>y + 9 = ((2x+2)^2) / 8</span>
y = ((2x+2)^2) / 8 - 9
there will be one solution because the lines intersect at exactly one set of points.
(0,6)(6,3)
slope(m) = (3-6) / (6-0) = -3/6 = -1/2
y = mx + b
6 = -1/2(0) + b
6 = b
y = -1/2x + 6
(0,0)(6,6)
slope(m) = (6-0) / (6-0) = 6/6 = 1
y = mx + b
6 = 1(6) + b
6 = 6 + b
6 - 6 = b
0 = b
y = x + 0
x = -1/2x + 6
1/2x + x = 6
1/2x + 2/2x = 6
3/2x = 6
x = 6/(3/2)
x = 6 * 2/3
x = 12/3 = 4
<span>solution is : (4,4)</span>
Answer:
A sample of 179 is needed.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
That is z with a pvalue of
, so Z = 1.44.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
A previous study found that for an average family the variance is 1.69 gallon?
This means that 
If they are using a 85% level of confidence, how large of a sample is required to estimate the mean usage of water?
A sample of n is needed, and n is found for M = 0.14. So






Rounding up
A sample of 179 is needed.
Answer:
The system of inequalities is
y\geq 3x-2
y<-(1/5)x+2
Step-by-step explanation:
step 1
Find the equation of the solid blue line
Let
A(0,-2), B(1,1)
Find the slope of AB
m=(1+2)/(1-0)=3
The equation of the line into slope intercept form is equal to
y=mx+b
we have
m=3
b=-2 - ----> the point A is the y-intercept
substitute
y=3x-2 - -----> equation of the solid blue line
The solution of the inequality is the shaded area above the solid line
therefore
The first inequality is
y\geq 3x-2
C(0,2), D(5,1)
step 2
Find the equation of the dashed red line
Let
Find the slope of CD
m=(1-2)/(5-0)=-1/5
The equation of the line into slope intercept form is equal to
y=mx+b
we have
m=-1/5
b=2 ----> the point C is the y-intercept
substitute
y=-(1/5)x+2 -----> equation of the dashed red line
The solution of the inequality is the shaded area below the dashed line
therefore
The second inequality is
y<-(1/5)x+2
The system of inequalities is
y\geq 3x-2
y<-(1/5)x+2
Answer
It would be 3x2 which equals 6
Example-