Answer:
the name of the SI unit for force is the newton
Answer:
The center of mass of the two-ball system is 7.05 m above ground.
Explanation:
<u>Motion of 0.50 kg ball:</u>
Initial speed, u = 0 m/s
Time = 2 s
Acceleration = 9.81 m/s²
Initial height = 25 m
Substituting in equation s = ut + 0.5 at²
s = 0 x 2 + 0.5 x 9.81 x 2² = 19.62 m
Height above ground = 25 - 19.62 = 5.38 m
<u>Motion of 0.25 kg ball:</u>
Initial speed, u = 15 m/s
Time = 2 s
Acceleration = -9.81 m/s²
Substituting in equation s = ut + 0.5 at²
s = 15 x 2 - 0.5 x 9.81 x 2² = 10.38 m
Height above ground = 10.38 m
We have equation for center of gravity

m₁ = 0.50 kg
x₁ = 5.38 m
m₂ = 0.25 kg
x₂ = 10.38 m
Substituting

The center of mass of the two-ball system is 7.05 m above ground.
Answer:
at the beginning: 
when the plates are pulled apart: 
Explanation:
The capacitance of a parallel-plate capacitor is given by

where
k is the relative permittivity of the medium (for air, k=1, so we can omit it)
is the permittivity of free space
A is the area of the plates of the capacitor
d is the separation between the plates
In this problem, we have:
is the area of the plates
is the separation between the plates at the beginning
Substituting into the formula, we find

Later, the plates are pulled apart to
, so the capacitance becomes


Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Answer:
If she stands on the North side of a river flowing to the East at 5 mph,
she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have
x^2 + 5^2 = 10^2 where x is her speed directly across the river
x = (75)^1/2 = 8.66 mph towards the South
sin theta = 5 / 10 = 1/2
She must angle the boat at 30 deg from straight South