Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.
Answer:
Magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Given
Contact Time = t = 0.05 seconds
Mass (of ball) = 0.80kg
Initial Velocity = u = 25m/s
Final Velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is given by;
F = ma
Where m = 0.8kg
a = Average Acceleration
a = (u + v)/t
a = (25 + 25)/0.05
a = 50/0.05
a = 1000m/s²
Average Force = Mass * Average Acceleration
Average Force = 0.8kg * 1000m/s²
Average Force = 800kgm/s²
Average Force = 800N
Hence, the magnitude of the average force exerted on the wall by the ball is 800N
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
100 cc
Explanation:
Heat released in cooling human body by t degree
= mass of the body x specific heat of the body x t
Substituting the data given
Heat released by the body
= 70 x 3480 x 1
= 243600 J
Mass of water to be evaporated
= 243600 / latent heat of vaporization of water
= 243600 / 2420000
= .1 kg
= 100 g
volume of water
= mass / density
= 100 / 1
100 cc
1 / 10 litres.
Answer:
Red light
Explanation:
The energy emitted during an electron transition in an atom of hydrogen is given by
where
is the energy of the lowest level
n1 and n2 are the numbers corresponding to the two levels
Here we have
n1 = 3
n2 = 2
So the energy of the emitted photon is
Converting into Joules,
And now we can find the wavelength of the emitted photon by using the equation
where h is the Planck constant and c is the speed of light. Solving for ,
And this wavelength corresponds to red light.