The pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
Explanation:
In the present problem, the temperature is said to remain at constant and there is change in the pressure. So according to Boyle's law, the relationship between pressure and volume of any gaseous objects are inversely related to each other. In other words, the pressure attained by gas molecules in a container will be inversely proportional to the volume of the gas molecules occupied in the container, at constant temperature.

So, if two volumes V₁ and V₂ are considered, then their respective pressure will be represented as P₁ and P₂. Then, as per Boyle's law,

So let us consider, V₁ = 6 cm³ and V₂ = 4 cm³ and pressure P₁ = 405 kPa and we have to determine P₂.
Then, 
So, the pressure at new volume of 4 cm³ is 486 kPa. It can be seen that as there is decrease in the volume, there is an increase in the pressure. So it satisfied the Boyle's law.
Thus, the pressure gets increased to 486 kPa from 405 kPa, when the volume is decreased from 6 cm³ to 4 cm³.
Answer:
Option (c).
Explanation:
Cellulose is one of the most important carbohydrate of the plant that provide structural framework to the plant cells. Cellulose is made of the monomer of the glucose that are linked through the beta glycosidic linkages.
Although cellulose contains large number of glucose but it cannot be used as the nutrient source for humans. Humans and other vertebrates lacks the enzyme cellulase that is required for the digestion of cellulose. Cellulose cannot be broken down in the human body.
Thus, the correct answer is option (c).
Answer:
Sunlight
Explanation:
Photosynthesis is the process where by plants manufacture their own food through conversion of carbon(iv)oxide and water in presence to sunlight to produce glucose and oxygen as by product.
The reaction is photo-catalyzed and would only take place in the presence of sunlight.
6CO₂ + 6H₂O + sunlight → C₆H₁₂O₆ + 6O₂