Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]
I think the correct answer is b. Temperature is proportional to the average kinetic energy so when temperarure rises so will the average kinetic energy. I hope this helps. Let me know if anything is unclear.
Answer:
The answer is "2%"
Explanation:
Equation:


Formula:
![Ka = \frac{[H^{+}][NO_2^{-}]}{[HNO_2]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BNO_2%5E%7B-%7D%5D%7D%7B%5BHNO_2%5D%7D)
Let
at equilibrium

therefore,
![[H^{+}] = 2.0\times 10^{-2} \ M = 0.02 \ M](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%202.0%5Ctimes%2010%5E%7B-2%7D%20%5C%20M%20%3D%200.02%20%5C%20M)
Calculating the % ionization:
![= \frac{([H^{+}]}{[HNO_2])} \times 100 \\\\= \frac{0.02}{1}\times 100 \\\\= 2\%\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%28%5BH%5E%7B%2B%7D%5D%7D%7B%5BHNO_2%5D%29%7D%20%5Ctimes%20100%20%5C%5C%5C%5C%3D%20%5Cfrac%7B0.02%7D%7B1%7D%5Ctimes%20100%20%5C%5C%5C%5C%3D%202%5C%25%5C%5C%5C%5C)
Answer:
Q = 1360.248 j
Explanation:
Given data:
Mass of brass = 298.3 g
Initial temperature = 30.0°C
Final temperature = 150°C
Specific heat capacity of brass = 0.038 J/g.°C
Heat absorbed = ?
SOLUTION:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30.0°C
ΔT = 120°C
Q = 298.3 g × 0.038 J/g.°C × 120°C
Q = 1360.248 j
Answer:
The answer is A. solvent, solute, solution.
Explanation: