What's the relationship between total and partial pressure? The total pressure is the sum of the parcial pressures!
So for us, it would be:
378= 212+101+x
where x is the parcial pressure of nitrogen.
Now we count:
378= 212+101+x
378=313+x
378-313=x
65=x
So the parcial pressure exerted by nitrogen is 65!
Answer:
6. 7870 kg/m³ (3 s.f.)
7. 33.4 g (3 s.f.)
8. 12600 kg/m³ (3 s.f.)
Explanation:
6. The SI unit for density is kg/m³. Thus convert the mass to Kg and volume to m³ first.
1 kg= 1000g
1m³= 1 ×10⁶ cm³
Mass of iron bar
= 64.2g
= 64.2 ÷1000 kg
= 0.0642 kg
Volume of iron bar
= 8.16 cm³
= 8.16 ÷ 10⁶


Density of iron bar

= 7870 kg/m³ (3 s.f.)
7.

Mass
= 1.16 ×28.8
= 33.408 g
= 33.4 g (3 s.f.)
8. Volume of brick
= 12 cm³

Mass of brick
= 151 g
= 151 ÷ 1000 kg
= 0.151 kg
Density of brick
= mass ÷ volume

(3 s.f.)
Answer:
The concentration of KOH is 0.186 M
Explanation:
First things first, we need too write out the balanced equation between HBr and KOH.
This is given as;
KOH (aq) + HBr (aq) → KBr (aq) + H2O (l)
From the reaction above, we can tell that it takes 1 mole of KOH to react with 1 mole of HBr.
We use the acid base formular in calculating unknown concentrations. This is given as;

where;
Ca = Concentration of acid
Va = Volume of acid
Cb = Concentration of base
Vb = Volume of base
na = Number of moles of acid
nb = Number of moles of base
KOH is the base and HBr is acid.
Hence;
Ca = 0.225
Va = 35
Cb = ?
Vb = 42.3
na = 1
nb = 1
Making Cb subject of formular we have;

Cb = (0.225 * 35 * 1) / (42.3 * 1)
Cb = 0.186 M
Conventional volcanoes are known to erupt after pressure builds up from new magma flowing into the magma chambers that lie below the vents on the Earth's surface.
All Elements are obtained in the periodic table & water is Not an element it is a compound.