Answer : The volume of container will be 44.8 L
Explanation :
At STP condition,
The temperature and pressure are 273 K and 1 atm respectively.
As we know that at STP, 1 mole of substance occupies 22.4 L volume of gas.
As per question,
1 mole of nitrogen gas occupies 22.4 L volume
and,
1 mole of neon gas also occupies 22.4 L volume
Thus, total volume will be:
Total volume of container = 22.4 + 22.4 = 44.8 L
Hence, the volume of container will be 44.8 L
Answer:D
Explanation:
Number of electrons=Number of protons
Sodium atom has 1 valence electron
Answer:
20ppm
Explanation:
parts per million are defined as the mass of solute in mg (In this case, mass of DDT) per kg of sample.
To solve this question we must find the mass of DDT in mg and the mass of sample in kg:
<em>Mass DDT:</em>
0.10g * (1000mg / 1g) = 100mg
<em>Mass sample:</em>
5000g * (1kg / 1000g) = 5kg
Parts per Million:
100mg / 5kg =
<h3>20ppm</h3>
Answer: Bromide is many orders of magnitude better than fluoride in leaving group ability
Explanation:
As Size of an atom Increases, the Basicity Decreases this is because if we move downwards from the top of the periodic table to the bottom of the periodic table, the size of an atom increases. As size increases, basicity will decrease, meaning the element will be less likely to act as a base implying that the element will be less likely to share its electrons.
in the same vein. With an increase in size, basicity decreases, making the ability of the leaving group to leave increase to increase . This can be seen in the halogens going down the group from
F--- worst
Cl----fair
Br ----good
I-----excellent
with fluorine having the worst ability to leave than Bromine which is better in terms of the leaving group ability.
Answer: -
3.151 M
Explanation: -
Let the volume of the solution be 1000 mL.
At 25.0 °C, Density = 1.260 g/ mL
Mass of the solution = Density x volume
= 1.260 g / mL x 1000 mL
= 1260 g
At 25.0 °C, the molarity = 3.179 M
Number of moles present per 1000 mL = 3.179 mol
Strength of the solution in g / mol
= 1260 g / 3.179 mol = 396.35 g / mol (at 25.0 °C)
Now at 50.0 °C
The density is 1.249 g/ mL
Mass of the solution = density x volume = 1.249 g / mL x 1000 mL
= 1249 g.
Number of moles present in 1249 g = Mass of the solution / Strength in g /mol
= 
= 3.151 moles.
So 3.151 moles is present in 1000 mL at 50.0 °C
Molarity at 50.0 °C = 3.151 M