<u>Answer:</u> The molar mass of the insulin is 6087.2 g/mol
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = 15.5 mmHg
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (insulin) = 33 mg = 0.033 g (Conversion factor: 1 g = 1000 mg)
Volume of solution = 6.5 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:

Hence, the molar mass of the insulin is 6087.2 g/mol
Ca + Cl2 = CaCl₂
A synthesis <span>reaction.</span>
3.
∆E = ∆m x c ² ∆m = E / c ² ∆m = 3,83•10^-12 / 3•10^8 ² ∆m = 4,256•10^-29 kg
Taking this class as well
Answer : The solubility of
in water is, 
Explanation :
The solubility equilibrium reaction will be:

Let the molar solubility be 's'.
The expression for solubility constant for this reaction will be,
![K_{sp}=[Ag^{+}]^3[PO_4^{3-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%7B%2B%7D%5D%5E3%5BPO_4%5E%7B3-%7D%5D)


Given:
= 
Now put all the given values in the above expression, we get:



Therefore, the solubility of
in water is, 