<span>Solubility is the property of a solid, liquid or gaseous chemical substance called solute to dissolve in a solid, liquid or gaseous solvent.</span>
"Silver chloride is essentially insoluble in water" this statement is true for the equilibrium constant for the dissolution of silver chloride.
Option: b
<u>Explanation</u>:
As silver chloride is essentially insoluble in water but also show sparing solubility, its reason is explained through Fajan's rule. Therefore when AgCl added in water, equilibrium take place between undissolved and dissolved ions. While solubility product constant
for silver chloride is determined by equilibrium concentrations of dissolved ions. But solubility may vary also at different temperatures. Complete solubility is possible in ammonia solution as it form stable complex as water is not good ligand for Ag+.
To calculate
firstly molarity of ions are needed to be found with formula: 
Then at equilibrium cations and anions concentration is considered same hence:
![\left[\mathbf{A} \mathbf{g}^{+}\right]=[\mathbf{C} \mathbf{I}]=\text { molarity of ions }](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%3D%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D%3D%5Ctext%20%7B%20molarity%20of%20ions%20%7D)
Hence from above data
can be calculated by:
= ![\left[\mathbf{A} \mathbf{g}^{+}\right] \cdot[\mathbf{C} \mathbf{I}]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%20%5Ccdot%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D)
Answer:
1.138158E24 atoms or 1.14 x 10^24 atoms
Explanation:
To find atoms/particles from moles you just want to convert using avogadro's number which is 6.022 x 10^23
1.89 mol x 6.022 • 10^23
———— = 1.138158E24 atoms
1 mol
so 1.138158E24 atoms or 1.14 x 10^24 for scientific notation
hope this helps :)
Answer:
2nd one down
Explanation: distance divided by time interval
Answer:
The answer to your question is : letter B. 0.25 atm
Explanation:
To solve this problem we need to use the combined gas law:
<u>P₁V₁</u> = <u>P₂V₂</u>
T₁ T₂
Data
P1 = 0.99 atm V1 = 2 l T1 = 273K
P2 = ? V2 = 4 l T2 = 137K
Now, the clear P2 from the equation and we get
P2 = P1V1T2 / T1V2
Substitution P2 = (2 x 0.99 x 137)/(273 x 4)
P2 = 271.26 / 1092
Result P2 = 0.248 atm ≈ 0.25 atm