<h3>
Answer: A. 9</h3>
=====================================================
Explanation:
Draw in the segments AO and OC.
Triangle ABO is congruent to triangle CBO. We can prove this through the use of the HL theorem. HL stands for hypotenuse leg.
Since the triangles are congruent, this means the corresponding pieces AB and BC are the same length.
Then we can say:
AB+BC = AC .... segment addition postulate
AB+AB = AC .... plug in BC = AB
2*AB = AC
2*AB = 18
AB = 18/2 .... divide both sides by 2
AB = 9
In short, the chord AC is bisected by the perpendicular radius drawn in the diagram. So all we do is cut AC = 18 in half to get AB = 9.
The rotational symmetry has more than one order of rotational symmetry the objects can fit itself within 360 degrees.
The answer to the math question presented above would be 10. <span>From 5 employees at a company a group of 3 employees will be chosen to work on a project, the number of different groups of 3 employees can be chosen is 10. You can have 10 different groups of threes in 5 employees.</span>
Answer:
A. √3 : 2
D. 3√3 : 6
Step-by-step explanation:
In a triangle described as 30°-60°-90° triangle, the base angles are 90° and 60°
The side with angles 90° and 60° is the shortest leg and can be represented by 1 unit
The hypotenuse side is assigned a value twice the shorter leg value, which is 2 units
From Pythagorean relationship; the square of the hypotenuse side subtract the square of the shorter leg gives the square of the longer side
This is to say if;
The given the shorter leg = 1 unit
The hypotenuse is twice the shorter leg= 2 units
The longer leg is square-root of the difference between the square of the hypotenuse and that of the shorter leg

where the longer leg is represented by side b in the Pythagorean theorem, the hypotenuse by c and the shorter leg by a to make;

<u>Hence the summary is</u>
a=shorter leg= 1 unit
b=longer leg = √3 units
c=hypotenuse=2 units
The ratio of longer leg to its hypotenuse is
=√3:2⇒ answer option A
This is the same as 3√3:6 ⇒answer option D because you can divide both sides of the ratio expression by 3 and get option A

Answers are :option A and D