Answer:
4.8L ( i.e 4.8 x 10^-3 m3)
Explanation:
Step 1:
Data obtained from the question.
Initial volume (V1) = 4.2L
Initial temperature (T1) = 0°C
Final temperature (T2) = 37°C
Final volume (V2) =?
Step 2:
Conversion of celsius temperature to Kelvin temperature. This is illustrated below
K = °C + 273
T1 = 0°C = 0°C + 273 = 273K
T2 = 37°C = 37°C + 273 = 310K
Step 3:
Determination of the final volume.
Since the pressure is constant,
Charles' Law equation will be applied as shown below:
V1 /T1 = V2/T2
4.2/273 = V2 /310
Cross multiply to express in linear form
273 x V2 = 4.2 x 310
Divide both side by 273
V2 = (4.2 x 310)/273
V2 = 4.8L ( i.e 4.8 x 10^-3 m3)
Therefore, the volume of the air in the lungs at that point is 4.8L ( i.e 4.8 x 10^-3 m3)
Answer:
Not between significant digits.
Explanation:
A zero not significant when it's not between significant digits.
Distance of lake a is 200 km at 20 degree north of east
distance between lake a and b is 230 km at 30 degree west of north
now the distance between base and lake b is given as

given that




now the total distance is


now the magnitude of the distance is given as


also the direction is given as


<em>so it is 277.4 km at 74.7 degree North of East</em>
Answer:
600,000,000 degree C
Explanation:
This stage is the last stage and is refereed to as supernova. In the beginning of this stage, gravity pulls the inner core and crush it, due to which fusion of atoms starts. Carbon and Oxygen fuse together and the temperature is about of 600,000,000 degree C.
The most heavier atom that can be formed out of this fusion is the iron. The moment all the atoms becomes of iron, no further fusion is possible hence that body emits radiation of high intensity and collapse causing a big supernova.
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.