Answer:
l = 10.16 m
Explanation:
In this case, we have the period of oscillation of the pendulum is 6.4 s. It is required to find the height of the tower.
We know that the pendulum executes SHM. Let l is the height of the tower. The time period of simple pendulum is given by :

g is acceleration due to gravity
We need to rearrange the above equation such that,

So, the height of the tower is 10.16 m.
Answer:
1) El diámetro es de aproximadamente 913,987 cm.
2) La fuerza del cilindro es 5576850 kgf
Explanation:
1) Los parámetros dados son;
El volumen del aire = 13,122 litros = 13122000 cm³
La presión de trabajo = 8.5 kgf / cm²
La longitud del cilindro = 20 cm.
Por lo tanto, tenemos;
El área de la base del cilindro = π · r² = 13122000 cm³ / (20 cm) = 656100 cm²
r = √ (656100 / π) ≈ 456,994 cm
El diámetro = 2 × r ≈ 2 × 456.994 ≈ 913.987 cm
El diámetro ≈ 913,987 cm
2) La fuerza del cilindro = El área de la base del cilindro × La presión de trabajo
∴ La fuerza del cilindro = 656100 cm² × 8.5 kgf / cm² = 5576850 kgf
La fuerza del cilindro = 5576850 kgf
Answer:
i think cool air moves slow and hot air moves fast
Answer:
t ’=
, v_r = 1 m/s t ’= 547.19 s
Explanation:
This is a relative velocity exercise in a dimesion, since the river and the boat are going in the same direction.
By the time the boat goes up the river
v_b - v_r = d / t
By the time the boat goes down the river
v_b + v_r = d '/ t'
let's subtract the equations
2 v_r = d ’/ t’ - d / t
d ’/ t’ = 2v_r + d / t
In the exercise they tell us
d = 1.22 +1.45 = 2.67 km= 2.67 10³ m
d ’= 1.45 km= 1.45 1.³ m
at time t = 69.1 min (60 s / 1min) = 4146 s
the speed of river is v_r
t ’=
t ’=
In order to complete the calculation, we must assume a river speed
v_r = 1 m / s
let's calculate
t ’=
t ’= 547.19 s
Answer:
a) 

b) a = 1.5 m/s²
Explanation:
a) The horizontal and vertical components of Emily's force can be found knowing the angle and the exerted force.
Since the handle is inclined at 40.0° below the horizontal we have:


b) The acceleration of the car can be calculated as follows:
We used the horizontal component of the force because the cart is moving in that direction.

Hence, the acceleration of the car is 1.5 m/s².
I hope it helps you!